Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7600, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217175

RESUMEN

Entangled photon-pair sources are at the core of quantum applications like quantum key distribution, sensing, and imaging. Operation in space-limited and adverse environments such as in satellite-based and mobile communication requires robust entanglement sources with minimal size and weight requirements. Here, we meet this challenge by realizing a cubic micrometer scale entangled photon-pair source in a 3R-stacked transition metal dichalcogenide crystal. Its crystal symmetry enables the generation of polarization-entangled Bell states without additional components and provides tunability by simple control of the pump polarization. Remarkably, generation rate and state tuning are decoupled, leading to equal generation efficiency and no loss of entanglement. Combining transition metal dichalcogenides with monolithic cavities and integrated photonic circuitry or using quasi-phasematching opens the gate towards ultrasmall and scalable quantum devices.

2.
ACS Photonics ; 11(3): 1060-1067, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38523750

RESUMEN

We formulate a new conceptual approach for one-shot complete polarization state measurement with nanostructured metasurfaces applicable to classical light and multiphoton quantum states by drawing on the principles of generalized quantum measurements based on positive operator-valued measures. Accurate polarization reconstruction from a combination of photon counts or correlations from several diffraction orders is robust with respect to even strong fabrication inaccuracies, requiring only a single classical calibration of the metasurface transmission. Furthermore, this approach operates with a single metagrating without interleaving, allowing for a reduction in metasurface size while preserving high transmission efficiency and output beam quality. We theoretically obtained original metasurface designs, fabricated the metasurface from amorphous silicon nanostructures deposited on glass, and experimentally confirmed accurate polarization reconstruction of laser beams. We also anticipate robust operation under changes in environmental conditions, opening new possibilities for space-based imaging and satellite optics.

3.
Sci Rep ; 14(1): 977, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200053

RESUMEN

We experimentally demonstrate frequency non-degenerate photon-pair generation via spontaneous four-wave mixing from a novel CS2-filled microstructured optical fiber. CS2 has high nonlinearity, narrow Raman lines, a broad transmission spectrum, and also has a large index contrast with the microstructured silica fiber. We can achieve phase matching over a large spectral range by tuning the pump wavelength, allowing the generation of idler photons in the infrared region, which is suitable for applications in quantum spectroscopy. Moreover, we demonstrate a coincidence-to-accidental ratio of larger than 90 and a pair generation efficiency of about [Formula: see text] per pump pulse, which shows the viability of this fiber-based platform as a photon-pair source for quantum technology applications.

4.
Opt Express ; 31(7): 11354-11362, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37155773

RESUMEN

Second-harmonic generation (SHG) is a second-order nonlinear optical process that is not allowed in media with inversion symmetry. However, due to the broken symmetry at the surface, surface SHG still occurs, but is generally weak. We experimentally investigate the surface SHG in periodic stacks of alternating, subwavelength dielectric layers, which have a large number of surfaces, thus enhancing surface SHG considerably. To this end, multilayer stacks of SiO2/TiO2 were grown by Plasma Enhanced Atomic Layer Deposition (PEALD) on fused silica substrates. With this technique, individual layers of a thickness of less than 2 nm can be fabricated. We experimentally show that under large angles of incidence (> 20 degrees) there is substantial SHG, well beyond the level, which can be observed from simple interfaces. We perform this experiment for samples with different periods and thicknesses of SiO2/TiO2 and our results are in agreement with theoretical calculations.

5.
Appl Opt ; 62(12): 3093-3099, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37133155

RESUMEN

Quantum ghost imaging (QGI) is an intriguing imaging protocol that exploits photon-pair correlations stemming from spontaneous parametric down-conversion (SPDC). QGI retrieves images from two-path joint measurements, where single-path detection does not allow us to reconstruct the target image. Here we report on a QGI implementation exploiting a two-dimensional (2D) single-photon avalanche diode (SPAD) array detector for the spatially resolving path. Moreover, the employment of non-degenerate SPDC allows us to investigate samples at infrared wavelengths without the need for short-wave infrared (SWIR) cameras, while the spatial detection can be still performed in the visible region, where the more advanced silicon-based technology can be exploited. Our findings advance QGI schemes towards practical applications.

6.
Opt Express ; 30(16): 29680-29693, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299137

RESUMEN

We theoretically study the generation of photon pairs via spontaneous four-wave mixing (SFWM) in a liquid-filled microstructured suspended-core optical fiber. We show that it is possible to control the wavelength, group velocity, and bandwidths of the two-photon states. Our proposed fiber structure shows a large number of degrees of freedom to engineer the two-photon state. Here, we focus on the factorable state, which shows no spectral correlation in the two-photon components of the state, and allows the heralding of a single-photon pure state without the need for spectral post-filtering.

7.
Phys Rev Lett ; 128(17): 173601, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35570459

RESUMEN

We propose a nonlinear imaging scheme with undetected photons that overcomes the diffraction limit by transferring near-field information at one wavelength to far-field information of a correlated photon with a different wavelength generated through spontaneous photon-pair generation. At the same time, this scheme allows for retrieval of high-contrast images with zero background, making it a highly sensitive scheme for imaging of small objects at challenging spectral ranges with subdiffraction resolutions.

8.
Opt Express ; 29(17): 27362-27372, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615154

RESUMEN

We report the first demonstration of broadband adiabatic directional couplers in thin-film lithium niobate on insulator (LNOI) waveguides. A three LN-waveguide configuration with each waveguide having a ridge cross section of less than 1 square micron, built atop a layer of SiO2 based on a 500-µm-thick Si substrate, has been designed and constructed to optically emulate a three-state stimulated Raman adiabatic passage system, with which a unique counterintuitive adiabatic light transfer phenomenon in a high coupling efficiency of >97% (corresponding to a >15 dB splitting ratio) spanning telecom S, C, and L bands for both TE and TM polarization modes has been observed for a 2-mm long coupler length. An even broader operating bandwidth of >800 nm of the device can be found from the simulation fitting of the experimental data. The footprint of the realized LNOI adiabatic coupler has been reduced by >99% compared to its bulk counterparts. Such an ultra-compact, broadband LNOI adiabatic coupler can be further used to implement or integrate with various photonic elements, a potential building block for realizing large-scale integrated photonic (quantum) circuits in LN.

9.
Nano Lett ; 21(10): 4423-4429, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33971095

RESUMEN

All-dielectric optical metasurfaces are a workhorse in nano-optics, because of both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces with electric and magnetic Mie-like resonances at various wavelengths. By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way. Within a narrow bandwidth around the resonance, the rate of pair production is enhanced up to 2 orders of magnitude, compared to an unpatterned film of the same thickness and material. These results enable flat-optics sources of entangled photons-a new promising platform for quantum optics experiments.

11.
Nano Lett ; 20(12): 8608-8614, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33180501

RESUMEN

Lithium niobate is an excellent and widely used material for nonlinear frequency conversion due to its strong optical nonlinearity and broad transparency region. Here, we report the fabrication and experimental investigation of resonant nonlinear metasurfaces for second-harmonic generation based on thin-film lithium niobate. In the fabricated metasurfaces, we observe pronounced Mie-type resonances leading to enhanced second-harmonic generation in the direction normal to the metasurface. We find the largest second-harmonic generation efficiency for the resonance dominated by the electric contributions because its specific field distribution enables the most efficient usage of the largest element of the lithium niobate nonlinear susceptibility tensor. This is confirmed by polarization-resolved second-harmonic measurements, where we study contributions from different elements of the nonlinear susceptibility tensor to the total second-harmonic signal. Our work facilitates establishing lithium niobate as a material for resonant nanophotonics.

12.
Opt Express ; 28(20): 28792-28809, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33114790

RESUMEN

Spontaneous parametric down-conversion in coupled nonlinear waveguides is a flexible approach for generating tunable path entangled states. We describe a formalism based on the Cayley-Hamilton theorem to compute the quantum states generated by waveguide arrays for arbitrary system parameters. We find that all four Bell states can be generated in directional couplers with non-degenerate photons. Our method enables one to efficiently explore the phase space of waveguide systems and readily assess the robustness of any given state to variations in the system's parameters. We believe it represents a valuable tool for quantum state engineering in coupled waveguide systems.

13.
Opt Express ; 28(14): 19818-19836, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32680054

RESUMEN

We present a planar spectro-polarimeter based on Fabry-Pérot cavities with embedded polarization-sensitive high-index nanostructures. A 7 µm-thick spectro-polarimetric system for 3 spectral bands and 2 linear polarization states is experimentally demonstrated. Furthermore, an optimal design is theoretically proposed, estimating that a system with a bandwidth of 127 nm and a spectral resolution of 1 nm is able to reconstruct the first three Stokes parameters with a signal-to-noise ratio of -13.14 dB with respect to the the shot noise limited SNR. The pixelated spectro-polarimetric system can be directly integrated on a sensor, thus enabling applicability in a variety of miniaturized optical devices, including but not limited to satellites for Earth observation.

14.
ACS Nano ; 14(5): 6138-6149, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32310637

RESUMEN

High-index dielectric metasurfaces featuring Mie-type electric and magnetic resonances have been of great interest in a variety of applications such as imaging, sensing, photovoltaics, and others, which led to the necessity of an efficient large-scale fabrication technique. To address this, here we demonstrate the use of single-pulse laser interference for direct patterning of an amorphous silicon film into an array of Mie resonators a few hundred nanometers in diameter. The proposed technique is based on laser-interference-induced dewetting. A precise control of the laser pulse energy enables the fabrication of ordered dielectric metasurfaces in areas spanning tens of micrometers and consisting of thousands of hemispherical nanoparticles with a single laser shot. The fabricated nanoparticles exhibit a wavelength-dependent optical response with a strong electric dipole signature. Variation of the predeposited silicon film thickness allows tailoring of the resonances in the targeted visible and infrared spectral ranges. Such direct and high-throughput fabrication is a step toward a simple realization of spatially invariant metasurface-based devices.

15.
Opt Express ; 28(2): 1539-1553, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121862

RESUMEN

Optically resonant high-index dielectric metasurfaces featuring Mie-type electric and magnetic resonances are usually fabricated by means of planar technologies, which limit the degrees of freedom in tunability and scalability of the fabricated systems. Therefore, we propose a complimentary post-processing technique based on ultrashort (≤ 10 ps) laser pulses. The process involves thermal effects: crystallization and reshaping, while the heat is localized by a high-precision positioning of the focused laser beam. Moreover, for the first time, the resonant behavior of dielectric metasurface elements is exploited to engineer a specific absorption profile, which leads to a spatially-selective heating and a customized modification. Such technique has the potential to reduce the complexity in the fabrication of non-uniform metasurface-based optical elements. Two distinct cases, a spatial pixelation of a large-scale metasurface and a height modification of metasurface elements, are explicitly demonstrated.

16.
Opt Express ; 27(24): 35475-35484, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878718

RESUMEN

Monolayers of transition metal dichalcogenides have a strong second-order nonlinear response enabling second-harmonic generation. Here, we control the spatial radiation properties of the generated second harmonic by patterning MoS2 monolayers using focused ion beam milling. We observe diffraction of the second harmonic into the zero and first diffraction orders via an inscribed one-dimensional grating. Additionally, we included a fork-like singularity into the grating to create a vortex beam in the first diffraction order.

17.
Rev Sci Instrum ; 90(5): 053705, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31153284

RESUMEN

Near-field optical microscopes with two independent tips for simultaneous excitation and detection can be essential tools for studying localized optical phenomena on the subwavelength scale. Here, we report on the implementation of a fully automated and robust dual-tip scanning near-field optical microscope (SNOM), in which the excitation tip is stationary, while the detection tip automatically scans the surrounding area. To monitor and control the distance between the two probes, mechanical interactions due to shear forces are used. We experimentally investigate suitable scan parameters and find that the automated dual-tip SNOM can operate stably for a wide range of parameters. To demonstrate the potential of the automated dual-tip SNOM, we characterize the propagation of surface plasmon polaritons on a gold film for visible and near-infrared wavelengths. The good agreement of the measurements with numerical simulations verifies the capability of the dual-tip SNOM for the near-field characterization of localized optical phenomena.

18.
Opt Lett ; 44(1): 69-72, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645550

RESUMEN

We demonstrate numerically that photonic crystal slab waveguides can generate spectrally unentangled biphoton states, highly desired for heralding of single photons. We achieve this by modally phase matching a counterpropagating spontaneous parametric down-conversion process, in a fully integrated scheme and without the need for periodic poling. Such a configuration is an ideal integrated source of heralded single photons, as it spatially separates the photons of a pair at the source without any extra components, while allowing for generation of spectrally narrow photons on a very short length scale.

19.
Opt Express ; 27(2): 1632-1645, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696226

RESUMEN

We report, to the best of our knowledge, the first broadband polarization mode splitter (PMS) based on the adiabatic light passage mechanism in the lithium niobate (LiNbO3) waveguide platform. A broad bandwidth of ~140 nm spanning telecom S, C, and L bands at polarization-extinction ratios (PER) of >20 dB and >18 dB for the TE and TM polarization modes, respectively, is found in a five-waveguide adiabatic coupler scheme whose structure is optimized by an adiabaticity engineering process in titanium-diffused LiNbO3 waveguides. When the five-waveguide PMS is integrated with a three-waveguide "shortcut to adiabaticity" structure, we realize a broadband, high splitting-ratio (ηc) mode splitter for spatial separation of TE- (H-) polarized pump (700-850 nm for ηc>99%), TM- (V-) polarized signal (1510-1630 nm for ηc>97%), and TE- (H-) polarized idler (1480-1650 nm for ηc>97%) modes. Such a unique integrated-optical device is of potential for facilitating the on-chip implementation of a pump-filtered, broadband tunable entangled quantum-state generator.

20.
Opt Lett ; 42(22): 4724-4727, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29140353

RESUMEN

We propose the concept of atom-mediated spontaneous parametric down-conversion, in which photon-pair generation can take place only in the presence of a single two-level emitter, relying on the bandgap evanescent modes of a nonlinear periodic waveguide. Using a guided signal mode, an evanescent idler mode, and an atom-like emitter with the idler's transition frequency embedded in the structure, we find a heralded excitation mechanism, in which the detection of a signal photon outside the structure heralds the excitation of the embedded emitter. We use a rigorous Green's function quantization method to model this heralding mechanism in a 1D periodic waveguide and determine its robustness against losses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...