Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
3D Print Addit Manuf ; 8(5): 302-314, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36654936

RESUMEN

In this study, the effect of the post-curing process as well as the long-term weathering behavior were studied for three different three-dimensional printable, pigmented (black), nonstabilized, ultraviolet (UV) cure resin formulations (A and B being thiol-ene chemistry, and C being acrylate chemistry). To study the effect of the post-cure process, the printed parts were post-cured using one of five different processes: no post-cure, UV-only, heat-only, UV+heat, and electron beam (EB) post-curing. Bulk tensile properties and nanohardness were measured for each of the systems and post-cure conditions. For weathering studies, the parts were post-cured using the recommended UV-only process and exposed using the ASTM D7869 exterior weathering protocol. The results show that the post-cure process had a significant effect on the final mechanical properties of the resins and was dependent on the underlying resin chemistry. Thermal post-curing was not as effective as UV curing for Resin C compared with the two other resins, which could both undergo thermal polymerization. In addition, Resin B showed the smallest change in mechanical properties before and after post-curing, regardless of the type of post-curing process. EB post-curing, even at very low dosages, that is, from 0.05 to 1 Mrad, resulted in considerable post-cure cross-linking to the point of embrittlement and a significant drop in percent elongation at break for dosages above 0.5 Mrad. Although Resins A and C outperformed Resin B in photooxidation performance, all three resins demonstrated that promising results considering no hindered amine light stabilizers were used in the formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA