Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 11(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35204197

RESUMEN

Kynurenine 3-monooxygenase (KMO), a key player in the kynurenine pathway (KP) of tryptophan degradation, regulates the synthesis of the neuroactive metabolites 3-hydroxykynurenine (3-HK) and kynurenic acid (KYNA). KMO activity has been implicated in several major brain diseases including Huntington's disease (HD) and schizophrenia. In the brain, KMO is widely believed to be predominantly localized in microglial cells, but verification in vivo has not been provided so far. Here, we examined KP metabolism in the brain after depleting microglial cells pharmacologically with the colony stimulating factor 1 receptor inhibitor PLX5622. Young adult mice were fed PLX5622 for 21 days and were euthanized either on the next day or after receiving normal chow for an additional 21 days. Expression of microglial marker genes was dramatically reduced on day 22 but had fully recovered by day 43. In both groups, PLX5622 treatment failed to affect Kmo expression, KMO activity or tissue levels of 3-HK and KYNA in the brain. In a parallel experiment, PLX5622 treatment also did not reduce KMO activity, 3-HK and KYNA in the brain of R6/2 mice (a model of HD with activated microglia). Finally, using freshly isolated mouse cells ex vivo, we found KMO only in microglia and neurons but not in astrocytes. Taken together, these data unexpectedly revealed that neurons contain a large proportion of functional KMO in the adult mouse brain under both physiological and pathological conditions.

2.
JAMA Oncol ; 7(9): 1343-1350, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34236401

RESUMEN

IMPORTANCE: Many cancer subtypes, including KIT-mutant gastrointestinal stromal tumors (GISTs), are driven by activating mutations in tyrosine kinases and may initially respond to kinase inhibitors but frequently relapse owing to outgrowth of heterogeneous subclones with resistance mutations. KIT inhibitors commonly used to treat GIST (eg, imatinib and sunitinib) are inactive-state (type II) inhibitors. OBJECTIVE: To assess whether combining a type II KIT inhibitor with a conformation-complementary, active-state (type I) KIT inhibitor is associated with broad mutation coverage and global disease control. DESIGN, SETTING, AND PARTICIPANTS: A highly selective type I inhibitor of KIT, PLX9486, was tested in a 2-part phase 1b/2a trial. Part 1 (dose escalation) evaluated PLX9486 monotherapy in patients with solid tumors. Part 2e (extension) evaluated PLX9486-sunitinib combination in patients with GIST. Patients were enrolled from March 2015 through February 2019; data analysis was performed from May 2020 through July 2020. INTERVENTIONS: Participants received 250, 350, 500, and 1000 mg of PLX9486 alone (part 1) or 500 and 1000 mg of PLX9486 together with 25 or 37.5 mg of sunitinib (part 2e) continuously in 28-day dosing cycles until disease progression, treatment discontinuation, or withdrawal. MAIN OUTCOMES AND MEASURES: Pharmacokinetics, safety, and tumor responses were assessed. Clinical efficacy end points (progression-free survival and clinical benefit rate) were supplemented with longitudinal monitoring of KIT mutations in circulating tumor DNA. RESULTS: A total of 39 PLX9486-naive patients (median age, 57 years [range, 39-79 years]; 22 men [56.4%]; 35 [89.7%] with refractory GIST) were enrolled in the dose escalation and extension parts. The recommended phase 2 dose of PLX9486 was 1000 mg daily. At this dose, PLX9486 could be safely combined with 25 or 37.5 mg daily of sunitinib continuously. Patients with GIST who received PLX9486 at a dose of 500 mg or less, at the recommended phase 2 dose, and with sunitinib had median (95% CI) progression-free survivals of 1.74 (1.54-1.84), 5.75 (0.99-11.0), and 12.1 (1.34-NA) months and clinical benefit rates (95% CI) of 14% (0%-58%), 50% (21%-79%), and 80% (52%-96%), respectively. CONCLUSIONS AND RELEVANCE: In this phase 1b/2a nonrandomized clinical trial, type I and type II KIT inhibitors PLX9486 and sunitinib were safely coadministered at the recommended dose of both single agents in patients with refractory GIST. Results suggest that cotargeting 2 complementary conformational states of the same kinase was associated with clinical benefit with an acceptable safety profile. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02401815.


Asunto(s)
Tumores del Estroma Gastrointestinal , Mesilato de Imatinib , Inhibidores de Proteínas Quinasas , Sunitinib , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Humanos , Mesilato de Imatinib/efectos adversos , Masculino , Persona de Mediana Edad , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos , Sunitinib/efectos adversos
3.
Blood Adv ; 4(8): 1711-1721, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32330242

RESUMEN

FMS-like tyrosine kinase 3 (FLT3) tyrosine kinase inhibitors (TKIs) have activity in acute myeloid leukemia (AML) patients with FLT3 internal tandem duplication (ITD) mutations, but efficacy is limited by resistance-conferring kinase domain mutations. This phase 1/2 study evaluated the safety, tolerability, and efficacy of the oral FLT3 inhibitor PLX3397 (pexidartinib), which has activity against the FLT3 TKI-resistant F691L gatekeeper mutation in relapsed/refractory FLT3-ITD-mutant AML. Ninety patients were treated: 34 in dose escalation (part 1) and 56 in dose expansion (part 2). Doses of 800 to 5000 mg per day in divided doses were tested. No maximally tolerated dose was reached. Plasma inhibitory assay demonstrated that patients dosed with ≥3000 mg had sufficient levels of active drug in their trough plasma samples to achieve 95% inhibition of FLT3 phosphorylation in an FLT3-ITD AML cell line. Based on a plateau in drug exposure, the 3000-mg dose was chosen as the recommended phase 2 dose. The most frequently reported treatment-emergent adverse events were diarrhea (50%), fatigue (47%), and nausea (46%). Based on modified response criteria, the overall response rate to pexidartinib among all patients was 21%. Twenty-three percent of patients treated at ≥2000 mg responded. The overall composite complete response rate for the study was 11%. Six patients were successfully bridged to transplantation. Median overall survival (OS) of patients treated in dose expansion was 112 days (90% confidence interval [CI], 77-150 days), and median OS of responders with complete remission with or without recovery of blood counts was 265 days (90% CI, 170-422 days). This trial was registered at www.clinicaltrials.gov as #NCT01349049.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Aminopiridinas , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas/efectos adversos , Pirroles , Tirosina Quinasa 3 Similar a fms/genética
4.
Nat Commun ; 10(1): 3758, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434879

RESUMEN

Many risk genes for the development of Alzheimer's disease (AD) are exclusively or highly expressed in myeloid cells. Microglia are dependent on colony-stimulating factor 1 receptor (CSF1R) signaling for their survival. We designed and synthesized a highly selective brain-penetrant CSF1R inhibitor (PLX5622) allowing for extended and specific microglial elimination, preceding and during pathology development. We find that in the 5xFAD mouse model of AD, plaques fail to form in the parenchymal space following microglial depletion, except in areas containing surviving microglia. Instead, Aß deposits in cortical blood vessels reminiscent of cerebral amyloid angiopathy. Altered gene expression in the 5xFAD hippocampus is also reversed by the absence of microglia. Transcriptional analyses of the residual plaque-forming microglia show they exhibit a disease-associated microglia profile. Collectively, we describe the structure, formulation, and efficacy of PLX5622, which allows for sustained microglial depletion and identify roles of microglia in initiating plaque pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Compuestos Orgánicos/farmacología , Placa Amiloide/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Enfermedad de Alzheimer/genética , Animales , Conducta Animal , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hipocampo/metabolismo , Humanos , Memoria , Ratones , Ratones Transgénicos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Transcriptoma
5.
Mutat Res Genet Toxicol Environ Mutagen ; 775-776: 48-54, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25435355

RESUMEN

Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.


Asunto(s)
Benzo(a)pireno/toxicidad , Exoma/efectos de los fármacos , Glándulas Mamarias Humanas/efectos de los fármacos , Carcinógenos Ambientales , Células Cultivadas , Aberraciones Cromosómicas , Células Epiteliales/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Genes Relacionados con las Neoplasias , Humanos , Glándulas Mamarias Humanas/citología , Mutación , Neoplasias/inducido químicamente , Neoplasias/genética , Análisis de Secuencia de ADN , Adulto Joven
6.
Dig Dis Sci ; 59(2): 365-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24048683

RESUMEN

BACKGROUND: The worldwide prevalences of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are estimated to range from 30 to 40 % and 5-17 %, respectively. Hepatocellular carcinoma (HCC) is primarily caused by hepatitis B infection, but retrospective data suggest that 4-29 % of NASH cases will progress to HCC. Currently the connection between NASH and HCC is unclear. AIMS: The purpose of this study was to identify changes in expression of HCC-related genes and metabolite profiles in NAFLD progression. METHODS: Transcriptomic and metabolomic datasets from human liver tissue representing NAFLD progression (normal, steatosis, NASH) were utilized and compared to published data for HCC. RESULTS: Genes involved in Wnt signaling were downregulated in NASH but have been reported to be upregulated in HCC. Extracellular matrix/angiogenesis genes were upregulated in NASH, similar to reports in HCC. Iron homeostasis is known to be perturbed in HCC and we observed downregulation of genes in this pathway. In the metabolomics analysis of hepatic NAFLD samples, several changes were opposite to what has been reported in plasma of HCC patients (lysine, phenylalanine, citrulline, creatine, creatinine, glycodeoxycholic acid, inosine, and alpha-ketoglutarate). In contrast, multiple acyl-lyso-phosphatidylcholine metabolites were downregulated in NASH livers, consistent with observations in HCC patient plasma. CONCLUSIONS: These data indicate an overlap in the pathogenesis of NAFLD and HCC where several classes of HCC related genes and metabolites are altered in NAFLD. Importantly, Wnt signaling and several metabolites are different, thus implicating these genes and metabolites as mediators in the transition from NASH to HCC.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Análisis por Conglomerados , Bases de Datos Genéticas , Hígado Graso/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Metabolómica , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal/genética
7.
Toxicol Appl Pharmacol ; 274(3): 408-16, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24355420

RESUMEN

The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Hígado/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Piel/efectos de los fármacos , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipoxia de la Célula/efectos de los fármacos , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Citocromo P-450 CYP1A1/genética , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hígado/citología , Hígado/metabolismo , Dibenzodioxinas Policloradas/toxicidad , Regiones Promotoras Genéticas , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Piel/citología , Piel/metabolismo , Activación Transcripcional
8.
Epigenetics ; 8(10): 1080-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23974009

RESUMEN

Genome-wide disruption of the epigenetic code is a hallmark of malignancy that encompasses many distinct, highly interactive modifications. Delineating the aberrant epigenome produced during toxicant-mediated malignant transformation will help identify the underlying epigenetic drivers of environmental toxicant-induced carcinogenesis. Gene promoter DNA methylation and gene expression profiling of arsenite-transformed prostate epithelial cells showed a negative correlation between gene expression changes and DNA methylation changes; however, less than 10% of the genes with increased promoter methylation were downregulated. Studies described herein confirm that a majority of the DNA hypermethylation events occur at H3K27me3 marked genes that were already transcriptionally repressed. In contrast to aberrant DNA methylation targeting H3K27me3 pre-marked silent genes, we found that actively expressed C2H2 zinc finger genes (ZNFs) marked with H3K9me3 on their 3' ends, were the favored targets of DNA methylation linked gene silencing. DNA methylation coupled, H3K9me3 mediated gene silencing of ZNF genes was widespread, occurring at individual ZNF genes on multiple chromosomes and across ZNF gene family clusters. At ZNF gene promoters, H3K9me3 and DNA hypermethylation replaced H3K4me3, resulting in a widespread downregulation of ZNF gene expression, which accounted for 8% of all the downregulated genes in the arsenical-transformed cells. In summary, these studies associate toxicant exposure with widespread silencing of ZNF genes by DNA hypermethylation-linked H3K9me3 spreading, further implicating epigenetic dysfunction as a driver of toxicant associated carcinogenesis.


Asunto(s)
Proteínas Portadoras/genética , Transformación Celular Neoplásica/genética , Metilación de ADN , Histonas/genética , Proteínas Nucleares/genética , Dedos de Zinc , Arsenitos/toxicidad , Línea Celular , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/patología , Ontología de Genes , Silenciador del Gen , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Proteínas Represoras
9.
Epigenetics ; 7(11): 1238-48, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22976526

RESUMEN

Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.


Asunto(s)
Arsénico/toxicidad , Transformación Celular Neoplásica/genética , Metilación de ADN , Animales , Cadherinas/genética , Carcinoma/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/inducido químicamente , ADN de Neoplasias/metabolismo , Epigénesis Genética , Femenino , Genes Homeobox , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Ratones , Ratones Desnudos , Familia de Multigenes , Trasplante de Neoplasias , Neoplasias de la Próstata/genética , Procesamiento Proteico-Postraduccional
10.
Toxicol Sci ; 116(1): 44-57, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20375083

RESUMEN

Arsenic is a known human bladder carcinogen; however, the mechanisms underlying arsenical-induced bladder carcinogenesis are not understood. Previous research has demonstrated that exposure of a nontumorigenic human urothelial cell line, UROtsa, to 50 nM monomethylarsonous acid (MMA(III)) for 52 weeks resulted in malignant transformation. To focus research on the early mechanistic events leading to MMA(III)-induced malignancy, the goal of this research was to resolve the critical period in which continuous MMA(III) exposure (50 nM) induces the irreversible malignant transformation of UROtsa cells. An increased growth rate of UROtsa cells results after 12 weeks of MMA(III) exposure. Anchorage-independent growth occurred after 12 weeks with a continued increase in colony formation when 12-week exposed cells were cultured for an additional 12 or 24 weeks without MMA(III) exposure. UROtsa cells as early as 12 weeks MMA(III) exposure were tumorigenic in severe combined immunodeficiency mice with tumorigenicity increasing when 12-week exposed cells were cultured for an additional 12 or 24 weeks in the absence of MMA(III) exposure. To assess potential underlying mechanisms associated with the early changes that occur during MMA(III)-induced malignancy, DNA methylation was assessed in known target gene promoter regions. Although DNA methylation remains relatively unchanged after 12 weeks of exposure, aberrant DNA methylation begins to emerge after an additional 12 weeks in culture and continues to increase through 24 weeks in culture without MMA(III) exposure, coincident with the progression of a tumorigenic phenotype. Overall, these data demonstrate that 50 nM MMA(III) is capable of causing irreversible malignant transformation in UROtsa cells after 12 weeks of exposure. Having resolved an earlier timeline in which MMA(III)-induced malignant transformation occurs in UROtsa cells will allow for mechanistic studies focused on the critical biological changes taking place within these cells prior to 12 weeks of exposure, providing further evidence about potential mechanisms of MMA(III)-induced carcinogenesis.


Asunto(s)
Compuestos Organometálicos/toxicidad , Animales , Western Blotting , Línea Celular Tumoral , Transformación Celular Neoplásica , Metilación de ADN , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones SCID , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de la Vejiga Urinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...