Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(5): e0269322, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094219

RESUMEN

The rise in infections caused by antibiotic-resistant bacteria is outpacing the development of new antibiotics. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a group of clinically important bacteria that have developed resistance to multiple antibiotics and are commonly referred to as multidrug resistant (MDR). The medical and research communities have recognized that, without new antimicrobials, infections by MDR bacteria will soon become a leading cause of morbidity and death. Therefore, there is an ever-growing need to expedite the development of novel antimicrobials to combat these infections. Toward this end, we set out to refine an existing mouse model of pulmonary Pseudomonas aeruginosa infection to generate a robust preclinical tool that can be used to rapidly and accurately predict novel antimicrobial efficacy. This refinement was achieved by characterizing the virulence of a panel of genetically diverse MDR P. aeruginosa strains in this model, by both 50% lethal dose (LD50) analysis and natural history studies. Further, we defined two antibiotic regimens (aztreonam and amikacin) that can be used as comparators during the future evaluation of novel antimicrobials, and we confirmed that the model can effectively differentiate between successful and unsuccessful treatments, as predicted by in vitro inhibitory data. This validated model represents an important tool in our arsenal to develop new therapies to combat MDR P. aeruginosa strains, with the ability to provide rapid preclinical evaluation of novel antimicrobials and support data from clinical studies during the investigational drug development process. IMPORTANCE The prevalence of antibiotic resistance among bacterial pathogens is a growing problem that necessitates the development of new antibiotics. Preclinical animal models are important tools to facilitate and speed the development of novel antimicrobials. Successful outcomes in animal models not only justify progression of new drugs into human clinical trials but also can support FDA decisions if clinical trial sizes are small due to a small population of infections with specific drug-resistant strains. However, in both cases the preclinical animal model needs to be well characterized and provide robust and reproducible data. Toward this goal, we have refined an existing mouse model to better predict the efficacy of novel antibiotics. This improved model provides an important tool to better predict the clinical success of new antibiotics.


Asunto(s)
Amicacina , Pseudomonas aeruginosa , Ratones , Humanos , Animales , Amicacina/farmacología , Aztreonam/farmacología , Pruebas de Sensibilidad Microbiana , Drogas en Investigación/farmacología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias
2.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35050692

RESUMEN

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Asunto(s)
Antivirales/farmacología , Cannabidiol/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Células A549 , Animales , Antivirales/química , COVID-19/virología , Cannabidiol/química , Cannabidiol/metabolismo , Chlorocebus aethiops , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células Epiteliales/virología , Femenino , Regulación Viral de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/fisiología , Humanos , Interferones/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , SARS-CoV-2/fisiología , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
3.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835277

RESUMEN

We developed a SARS-CoV-2 vaccine candidate (CoV-RBD121-NP) comprised of a tobacco mosaic virus-like nanoparticle conjugated to the receptor-binding domain of the spike glycoprotein of SARS-CoV-2 fused to a human IgG1 Fc domain. CoV-RBD121-NP elicits strong antibody responses in C57BL/6 mice and is stable for up to 12 months at 2-8 or 22-28 °C. Here, we showed that this vaccine induces a strong neutralizing antibody response in K18-hACE2 mice. Furthermore, we demonstrated that immunization protects mice from virus-associated mortality and symptomatic disease. Our data indicated that a sufficient pre-existing pool of neutralizing antibodies is required to restrict SARS-CoV-2 replication upon exposure and prevent induction of inflammatory mediators associated with severe disease. Finally, we identified a potential role for CXCL5 as a protective cytokine in SARS-CoV-2 infection. Our results suggested that disruption of the CXCL5 and CXCL1/2 axis may be important early components of the inflammatory dysregulation that is characteristic of severe cases of COVID-19.

4.
Science ; 373(6557): 931-936, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285133

RESUMEN

There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Coronavirus Humano OC43/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Tiazoles/farmacología , Células A549 , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/uso terapéutico , Benzamidas , COVID-19/virología , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Coronavirus Humano OC43/fisiología , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Transgénicos , Pruebas de Sensibilidad Microbiana , Piperidinas , Piridinas , SARS-CoV-2/enzimología , SARS-CoV-2/fisiología , Tiazoles/química , Tiazoles/metabolismo , Tiazoles/uso terapéutico , Carga Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
5.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26046436

RESUMEN

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Asunto(s)
Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , National Institutes of Health (U.S.) , Estados Unidos
6.
J Med Chem ; 57(24): 10314-28, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25399509

RESUMEN

A quinazolinedione-derived screening hit 2 was discovered with cellular antiviral activity against respiratory syncytial virus (CPE EC50 = 2.1 µM), moderate efficacy in reducing viral progeny (4.2 log at 10 µM), and marginal cytotoxic liability (selectivity index, SI ∼ 24). Scaffold optimization delivered analogs with improved potency and selectivity profiles. Most notable were compounds 15 and 19 (EC50 = 300-500 nM, CC50 > 50 µM, SI > 100), which significantly reduced viral titer (>400,000-fold), and several analogs were shown to block the activity of the RNA-dependent RNA-polymerase complex of RSV.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Quinazolinonas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Benzamidas/síntesis química , Diseño de Fármacos , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Quinazolinonas/síntesis química , Quinazolinonas/química , ARN Polimerasa Dependiente del ARN/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Relación Estructura-Actividad
7.
Virol J ; 10: 19, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23302182

RESUMEN

BACKGROUND: Human respiratory syncytial virus (hRSV) is a highly contagious pathogen and is the most common cause of bronchiolitis and pneumonia for infants and children under one year of age. Worldwide, greater than 33 million children under five years of age are affected by hRSV resulting in three million hospitalizations and 200,000 deaths. However, severe lower respiratory tract disease may occur at any age, especially among the elderly or those with compromised cardiac, pulmonary, or immune systems. There is no vaccine commercially available. Existing therapies for the acute infection are ribavirin and the prophylactic humanized monoclonal antibody (Synagis® from MedImmune) that is limited to use in high risk pediatric patients. Thus, the discovery of new inhibitors for hRSV would be clinically beneficial. RESULTS: We have developed and validated a 384-well cell-based, high-throughput assay that measures the cytopathic effect of hRSV (strain Long) in HEp-2 cells using a luminescent-based detection system for signal endpoint (Cell Titer Glo®). The assay is sensitive and robust, with Z factors greater than 0.8, signal to background greater than 35, and signal to noise greater than 24. Utilizing this assay, 313,816 compounds from the Molecular Libraries Small Molecule Repository were screened at 10 µM. We identified 7,583 compounds that showed greater than 22% CPE inhibition in the primary screen. The top 2,500 compounds were selected for confirmation screening and 409 compounds showed at least 50% inhibition of CPE and were considered active. We selected fifty-one compounds, based on potency, selectivity and chemical tractability, for further evaluation in dose response and secondary assays Several compounds had SI50 values greater than 3, while the most active compound displayed an SI50 value of 58.9. CONCLUSIONS: A robust automated luminescent-based high throughput screen that measures the inhibition of hRSV-induced cytopathic effect in HEp-2 cells for the rapid identification of potential inhibitors from large compound libraries has been developed, optimized and validated. The active compounds identified in the screen represent different classes of molecules, including aryl sulfonylpyrrolidines which have not been previously identified as having anti-hRSV activity.


Asunto(s)
Antivirales/aislamiento & purificación , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Automatización de Laboratorios/métodos , Efecto Citopatogénico Viral/efectos de los fármacos , Células Hep G2 , Hepatocitos/virología , Humanos , Mediciones Luminiscentes , Potexvirus
8.
J Med Chem ; 55(20): 8582-7, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23043370

RESUMEN

A high-throughput, cell-based screen was used to identify chemotypes as inhibitors for human respiratory syncytial virus (hRSV). Optimization of a sulfonylpyrrolidine scaffold resulted in compound 5o that inhibited a virus-induced cytopathic effect in the entry stage of infection (EC50 = 2.3 ± 0.8 µM) with marginal cytotoxicity (CC50 = 30.9 ± 1.1 µM) and reduced viral titer by 100-fold. Compared to ribavirin, sulfonylpyrrolidine 5o demonstrated an improved in vitro potency and selectivity index.


Asunto(s)
Antivirales/síntesis química , Pirrolidinas/síntesis química , Quinolinas/síntesis química , Virus Sincitiales Respiratorios/efectos de los fármacos , Sulfonamidas/síntesis química , Sulfonas/síntesis química , Antivirales/química , Antivirales/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Pirrolidinas/química , Pirrolidinas/farmacología , Quinolinas/química , Quinolinas/farmacología , Virus Sincitiales Respiratorios/fisiología , Ribavirina/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonas/química , Sulfonas/farmacología , Carga Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
9.
J Biomol Screen ; 16(1): 73-81, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21059874

RESUMEN

A highly reproducible and robust cell-based high-throughput screening (HTS) assay was adapted for screening of small molecules for antiviral activity against influenza virus strain A/Vietnam/1203/2004 (H5N1). The NIH Molecular Libraries Small Molecule Repository (MLSMR) Molecular Libraries Screening Centers Network (MLSCN) 100,000-compound library was screened at 50 µM. The "hit" rate (>25% inhibition of the viral cytopathic effect) from the single-dose screen was 0.32%. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen yielded 5 active compounds (SI value >3). One compound showed an SI(50) value of greater than 3, 3 compounds had SI values ranging from greater than 14 to 34, and the most active compound displayed an SI value of 94. The active compounds represent 2 different classes of molecules, benzoquinazolinones and thiazoloimidazoles, which have not been previously identified as having antiviral/anti-influenza activity. These molecules were also effective against influenza A/California/04/2009 virus (H1N1) and other H1N1 and H5N1 virus strains in vitro but not H3N2 strains. Real-time qRT-PCR results reveal that these chemotypes significantly reduced M1 RNA levels as compared to the no-drug influenza-infected Madin Darby canine kidney cells.


Asunto(s)
Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Aves , Línea Celular , Efecto Citopatogénico Viral/efectos de los fármacos , Perros , Humanos , Imidazoles/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Gripe Aviar , Gripe Humana , Concentración 50 Inhibidora , Quinazolinonas/farmacología , ARN/metabolismo , Tiazoles/farmacología
10.
J Biomol Screen ; 13(9): 879-87, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18812571

RESUMEN

Using a highly reproducible and robust cell-based high-throughput screening (HTS) assay, the authors screened a 100,000-compound library at 14- and 114-microM compound concentration against influenza strain A/Udorn/72 (H3N2). The "hit" rates (>50% inhibition of the viral cytopathic effect) from the 14- and 114-microM screens were 0.022% and 0.38%, respectively. The hits were evaluated for their antiviral activity, cell toxicity, and selectivity in dose-response experiments. The screen at the lower concentration yielded 3 compounds, which displayed moderate activity (SI(50) = 10-49). Intriguingly, the screen at the higher concentration revealed several additional hits. Two of these hits were highly active with an SI(50) > 50. Time of addition experiments revealed 1 compound that inhibited early and 4 other compounds that inhibited late in the virus life cycle, suggesting they affect entry and replication, respectively. The active compounds represent several different classes of molecules such as carboxanilides, 1-benzoyl-3-arylthioureas, sulfonamides, and benzothiazinones, which have not been previously identified as having antiviral/anti-influenza activity.


Asunto(s)
Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Subtipo H3N2 del Virus de la Influenza A/química , Animales , Automatización , Línea Celular , Química Farmacéutica/métodos , Perros , Diseño de Fármacos , Concentración 50 Inhibidora , Modelos Químicos , Ribavirina/farmacología , Replicación Viral/efectos de los fármacos
11.
J Biomol Screen ; 12(1): 33-40, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17200104

RESUMEN

The authors have developed a high-throughput screen (HTS) that allows for the identification of potential inhibitors of the severe acute respiratory syndrome coronavirus (SARS CoV) from large compound libraries. The luminescent-based assay measures the inhibition of SARS CoV-induced cytopathic effect (CPE) in Vero E6 cells. The assay was validated in 96-well plates in a BSL3 containment facility. The assay is sensitive and robust, with Z values > 0.6, signal to background (S/B) > 16, and signal to noise (S/N) > 3. The assay was further validated with 2 different diversity sets of compounds against the SARS CoV. The "hit" rate for both libraries was approximately 0.01%. The validated HTS assay was then employed to screen a 100,000-compound library against SARS CoV. The hit rate for the library in a single-dose format was determined to be approximately 0.8%. Screening of the 3 libraries resulted in the identification of several novel compounds that effectively inhibited the CPE of SARS CoV in vitro-compounds which will serve as excellent lead candidates for further evaluation. At a 10-microM concentration, 3 compounds with selective indexes (SI50) of > 53 were discovered.


Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Técnicas Químicas Combinatorias/métodos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Animales , Antivirales/química , Recuento de Células , Chlorocebus aethiops , Dimetilsulfóxido , Evaluación Preclínica de Medicamentos , Determinación de Punto Final , Concentración 50 Inhibidora , Luminiscencia , Reproducibilidad de los Resultados , Células Vero
12.
J Virol ; 77(1): 481-8, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12477853

RESUMEN

Except for ribavirin, no other antiviral drugs for treating hantaviral diseases have been identified. It is well established that ribavirin will inhibit the production of infectious Hantaan virus (HTNV); however, its mechanism of action is unknown. To characterize the inhibitory effect of ribavirin on HTNV, the levels of viral RNAs, proteins, and infectious particles were measured for 3 days posttreatment of HTNV-infected Vero E6 cells. HTNV-infected cells treated with ribavirin showed a slight reduction in the levels of cRNA, viral RNA, and mRNA populations on the first day postinfection. The amount of cRNA and viral RNA increased to that observed for untreated HTNV-infected cells on day 2, whereas mRNA levels were more greatly reduced on days 2 and 3. Despite the finding of S-segment mRNA, albeit low, three of the viral proteins-nucleocapsid (N) protein and glycoproteins G1 and G2-could not be detected by immunohistochemistry in ribavirin-treated cells. To test the hypothesis that these effects were caused by incorporation of ribavirin into nascent RNA and a resultant "error catastrophe" was occurring, we cloned and sequenced the S-segment cRNA/mRNA from ribavirin-treated or untreated cells from day 3. We found a high mutation frequency (9.5/1,000 nucleotides) in viral RNA synthesized in the presence of ribavirin. Hence, the transcripts produced in the presence of the drug were not functional. These results suggest that ribavirin's mechanism of action lies in challenging the fidelity of the hantavirus polymerase, which causes error catastrophe.


Asunto(s)
Antivirales/farmacología , Virus Hantaan/efectos de los fármacos , Ribavirina/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antígenos Virales/sangre , Chlorocebus aethiops , Virus Hantaan/fisiología , Mutación , Proteínas de la Nucleocápside/análisis , ARN Mensajero/análisis , ARN Viral/biosíntesis , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA