Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Funct Plant Biol ; 512024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38991103

RESUMEN

Heliotropium thermophilum (Boraginaceae) plants have strong antioxidant properties. This study investigated the effectiveness of the antioxidant system in protecting the photosynthetic machinery of H. thermophilum . Plants were obtained from Kizildere geothermal area in Buharkent district, Aydin, Turkey. Plants in the geothermal area that grew at 25-35°C were regarded as the low temperature group, while those that grew at 55-65°C were regarded as the high temperature group. We analysed the physiological changes of these plants at the two temperature conditions at stage pre-flowering and flowering. We meaured the effect of high soil temperature on water potential, malondialdehyde, cell membrane stability, and hydrogen peroxide analysis to determine stress levels on leaves and roots. Changes in antioxidant enzyme activities, ascorbate and chlorophyll content, chlorophyll fluorescence, photosynthetic gas exchange parameters, and photosynthetic enzymes (Rubisco and invertase) activities were also determined. Our results showed minimal changes to stress levels, indicating that plants were tolerant to high soil temperatures. In general, an increase in antioxidant enzyme activities, ascorbat levels, and all chlorophyll fluorescence parameters except for non-photochemical quenching (NPQ) and F v /F m were observed. The pre-flowering and flowering stages were both characterised by decreased NPQ, despite F v /F m not changing. Additionally, there was a rise in the levels of photosynthetic gas exchange parameters, Rubisco, and invertase activities. High temperature did not affect photosynthetic yield because H. thermophilum was found to stimulate antioxidant capacity, which reduces oxidative damage and maintains its photosynthetic machinery in high temperature conditions and therefore, it is tolerant to high soil temperature.


Asunto(s)
Antioxidantes , Heliotropium , Fotosíntesis , Suelo , Antioxidantes/metabolismo , Suelo/química , Heliotropium/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Calor , Adaptación Fisiológica , Turquía , Temperatura , Malondialdehído/metabolismo
2.
Physiol Mol Biol Plants ; 30(3): 513-525, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633275

RESUMEN

Silicon (Si) has been shown to improve plant defenses against a variety of stresses. However, how rutin (Rut) affects stress factors is yet to be fully explored. Moreover, their combined role in osmotic stress response remains unclear. The current study was performed to determine how the use of Rut and Si, both separately and in combination, improved the physiological resilience of maize seedlings to two levels of osmotic stress (induced by polyethylene glycol (PEG) 6000). We aimed to enhance osmotic stress tolerance with the simultaneous use of Rut and Si. First, we selected the best water status and the lowest membrane damage enhancing concentration of Rut (60 ppm) and Si (1 mM) to research their tolerance and resistance to osmotic stress (moderate: 10% PEG, severe: 15% PEG). The application of Rut and Si separately and together reduced oxidative stress by decreasing the reactive oxygen species and improved the relative water content, osmoprotectants (proline, total soluble sugar, and glycine-betaine), ascorbate level, and some antioxidant defense-related enzyme activities and their gene expression in maize seedlings under osmotic stress. However, these effects were more promising under moderate stress. As a result, findings from the study indicate the synergistic effect of combined Rut and Si on osmotic stress tolerance in maize seedlings. Overall, the combination of Rut and Si was more effective than independent Rut and Si in reducing osmotic stress in maize seedlings. Here, it was clear that Rut played an active role in alleviating stress. This combined application can be useful for developing drought tolerance in crops for the agriculture sector.

3.
Physiol Mol Biol Plants ; 28(1): 289-299, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35221584

RESUMEN

Paraquat (PQ) causes oxidative stress, the main source of damage in plants subjected to adverse environmental factors. Sodium nitroprusside (SNP), a signaling molecule, alleviates oxidative damage. The present study was carried out to investigate the role of exogenous SNP in the amelioration of PQ-mediated oxidative stress effects on Eruca sativa plantlets cultured in MS basal media. Firstly, MS medium supplemented with 6-BA was found to be the best basal medium for seed germination. Then, a rapid micropropagation protocol was designed to produce E. sativa plantlets by using nodal segments as explants, and 0.25 mg/L 6-BA in combination with 0.1 mg/L IBA was found to be the most favorable for shoot proliferation of E. sativa. Four weeks old plants were applied with or without SNP (100 µM) and exposed to oxidative stress induced by 2.5 µM PQ. The SNP application decreased membrane damage, hydrogen peroxide, and proline contents, and increased relative water, pigments, ascorbate and total phenolic contents, and some antioxidant enzyme activities in seedlings under PQ stress compared to PQ stress alone. These results suggested that exogenous SNP could protect E. sativa plantlets propagated in vitro with PQ stress through modulation of proline and phenolics biosynthesis and antioxidant defense system.

4.
Funct Plant Biol ; 48(12): 1241-1253, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600601

RESUMEN

This study focused on the impact of the antioxidant defence and glyoxalase systems on extreme heat tolerance of the thermophilic plant Heliotropium thermophilum L. For this purpose, plants were exposed to 20, 40, 60 and 80±5°C soil temperature gradually for 15days under laboratory conditions. Our results showed that the hydrogen peroxide and superoxide levels of H. thermophilum were lower at 40±5°C and higher at 80±5°C compared with plants grown at 20±5°C. Some antioxidant enzyme activities tended to increase in plants at 40, 60 and 80±5°C compared with those at 20±5°C and the protein contents responsible for the antioxidant enzymes were in parallel with these enzyme activities. The contents of both reduced and oxidised ascorbate and glutathione rose with increasing temperature. Methylglyoxal level was lower at 40±5°C and higher at 80±5°C compared with plants grown at 20±5°C. Glyoxalase activities highly increased with rising of soil temperature from 20±5°C to 80±5°C. The results of this study suggest that differential modulations of enzymatic antioxidants and the increase in non-enzymatic antioxidants and glyoxalase activities can contribute to the development of the thermotolerance of H. thermophilum through the detoxification of reactive oxygen species and methylglyoxal.


Asunto(s)
Heliotropium , Termotolerancia , Antioxidantes , Ácido Ascórbico , Glutatión
5.
Physiol Mol Biol Plants ; 27(4): 861-871, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33967468

RESUMEN

Heliotropium thermophilum can survive at a soil temperature of 65 °C in natural and laboratory conditions, but the mechanism of survival at high soil temperatures is not completely known. The objective of this study was to determine whether changes in abscisic acid (ABA), osmolytes and heat shock factors (HSFs) levels have an effective role in the development of thermotolerance in H. thermophilum at high temperatures. Soil temperature at which the thermophilic plant could live was gradually increased in laboratory conditions and the effects of four different temperatures (20 ± 5 °C: low, 40 ± 5 °C: mild, 60 ± 5 °C: medium, 80 ± 5 °C: extreme heat) were observed for 15 days. The results showed that the content of thiobarbituric acid reactive substances (TBARS) did not significantly change in extreme heat, whereas the leaf water potential and stomatal conductivity decreased. ABA biosynthesis, accumulation of osmolyte compounds including proline and total soluble sugars, and the expression levels of heat shock transcription factor A4A (HSFA4A), heat shock transcription factor A3 (HSFA3), and heat shock factor (HSF4) genes significantly increased with increase of soil temperature from 20 ± 5 °C to 80 ± 5 °C. In conclusion, we observed that H. thermophilum is an extreme thermophile. This plant can adjust osmotic activity to effectively take water through the osmolytes accumulation, reducing water loss by ABA-mediated stomatal closing and survive at high soil temperatures by stimulating the increased transcription level of HSFs.

6.
Photosynth Res ; 144(1): 35-48, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32112235

RESUMEN

Increased photosynthetic efficiencies in genotypes with greater proline level and in crops treated with proline under water deficit have been reported in recent years, but the biochemical and molecular mechanisms of this process are still not known. We examined photosystem II (PSII) activity, photosynthetic enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco), phosphoenolpyruvate carboxylase (PEPc), rubisco activase (RCA), and chlorophyll metabolic enzymes, magnesium chelatase (Mg-CHLI), and chlorophyllase (Chlase), which would be the primary targets of exogenous proline to provide photosynthetic protection to plants under PEG-induced short-term water deficit. Two maize genotypes W23/M14 with greater proline content and Safak with low proline content were hydroponically grown for 21-23 days, and then the seedlings were subjected to water deficit (- 0.75 MPa) induced by PEG6000 for 0, 4, and 8 h. Before the seedlings were exposed to the water deficit, proline (1 mM) was applied to the rooting medium of the Safak genotype for 2 days. The time course effects of the applications showed that exogenous proline significantly enhanced PSII efficiency, PEPc activity, rubisco activity, and the relative expression levels of PEPc, rubisco large subunit, rubisco small subunit, and RCA genes at 0, 4, and 8 h. The W23/M14 genotype had higher rubisco quantity than the Safak genotype at all time periods. Proline pre-treatment under the stress-free and PEG conditions reduced the activity of Chlase and the gene expressions of Chlase, while it enhanced Mg-CHLI gene expression at 0, 4, and 8 h. Taken together, the results indicated that the primary target of proline-stimulated signaling in maize seedlings exposed to short-term severe water deficit may be to induce PSII efficiency, activities of carbon dioxide fixation enzymes and chlorophyll metabolism and mitigate chlorophyll degradation.


Asunto(s)
Clorofila/metabolismo , Fotosíntesis/fisiología , Prolina/metabolismo , Plantones/metabolismo , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...