Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 359: 121000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669889

RESUMEN

Landfills are commonly used for waste disposal in many countries, and pose a significant threat of groundwater contamination. Dissolved organic matter (DOM) plays a crucial role as a carbon and energy source, supporting the growth and activity of microorganisms. However, the changes in the DOM signature and microbial community composition in landfill-affected groundwater and their bidirectional relationships remain inadequately explored. Herein, we showed that DOM originating from more recent landfills mainly comprises microbially produced substances resembling tryptophan and tyrosine. Conversely, DOM originating from older landfills predominantly comprises fulvic-like and humic-like compounds. Leachate leakage increases microbial diversity and richness and facilitates the transfer of foreign bacteria from landfills to groundwater, thereby increasing the vulnerability of the microbial ecosystem in groundwater. Deterministic processes dominated the assembly of the groundwater microbial community, while stochastic processes accounted for an increased proportion of the microbial community in the old landfills. The dominant phyla observed in groundwater were Proteobacteria, Bacteroidota, and Actinobacteriota, and humic-like substances play a crucial role in driving the variation in microbial communities in landfill-affected groundwater. Predictions using PICRUSt2 suggested significant associations between various metabolic pathways and microbial communities, with the Kyoto Encyclopedia of Genes and Genomes pathway "Metabolism" being the most predominant. The findings contribute to advancing our understanding of the transformation of DOM and its interplay with microbial communities and can serve as a scientific reference for decision-making regarding groundwater pollution monitoring and remediation.


Asunto(s)
Agua Subterránea , Sustancias Húmicas , Contaminantes Químicos del Agua , Agua Subterránea/microbiología , Agua Subterránea/química , Sustancias Húmicas/análisis , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
2.
Environ Res ; 247: 118230, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237756

RESUMEN

The transport of per- and polyfluoroalkyl substances (PFAS) from landfill leachate to surrounding soil and groundwater poses a threat to human health via the food chain or drinking water. Studies have shown that the transport process of PFAS from the solid to liquid phase in the environment is significantly affected by dissolved organic matter (DOM) adsorption. However, the mechanism of PFAS release from landfill solids into leachate and its transport to the surrounding groundwater remains unclear. In this study, we identified the composition of PFAS and DOM components and analyzed the association between DOM components, physicochemical factors, and PFAS concentrations in landfill leachate and groundwater. This study demonstrated that the frequency of PFAS detection in the samples was 100%, and the PFAS concentrations in leachate were greater than in the groundwater samples. Physicochemical factors, such as ammonium-nitrogen (NH4+-N), sodium (Na), calcium (Ca), DOM components C4 (macromolecular humic acid), SUVA254 (aromatic component content), and A240-400 (humification degree and molecular weight), were strongly correlated with PFAS concentrations. In conclusion, PFAS environmental risk management should be enhanced in landfills, especially in closed landfills, or landfills that are scheduled to close in the near future.


Asunto(s)
Fluorocarburos , Agua Subterránea , Eliminación de Residuos , Contaminantes Químicos del Agua , Humanos , Materia Orgánica Disuelta , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Agua Subterránea/química
3.
J Hazard Mater ; 465: 133081, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016321

RESUMEN

A large number of natural and anthropogenic wastes were landfilled, and dissolved organic matter (DOM) were formed during landfill. However, the composition, transformation, and coexistence characteristics of natural and anthropogenic DOM in leachate remain unclear. Fourier transform ion cyclotron resonance mass spectrometry, size exclusion chromatography, gas chromatography coupled with mass spectrometry, and three-dimensional excitation-emission matrix spectrum were employed to clarify comprehensively the abovementioned question. The results showed that natural DOM in young leachate constituted mainly straight-chain organic acids, protein substances, and building blocks of humic substances (BB). Straight-chain organic acids vanished in old leachates, and the concentration of protein substances and BB decreased from 44% to 26% and from 47% to 12%, respectively, while CHON and CHONS were degraded to CHO and CHOS during the process. As to anthropogenic DOM, its types and relative content in leachate increased during landfill, and aromatic acids, terpenes, halogenated organics, indoles, and phenols became the main organic components in old leachate. Compared to natural DOM, anthropogenic DOM was degraded slowly and accumulated in leachate, and some of the natural DOM facilitated the dechlorination of dichlorinated organic compounds. This study demonstrates that landfill led to an increase in humic substances and halogenated organic compounds in old leachate, which was intensified with concentrated leachate recirculation.

4.
Water Res ; 243: 120321, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473508

RESUMEN

Sanitary landfill is the most prevalent and economic method for municipal solid waste disposal, and the resultant groundwater pollution has become an environmental problem due to leachate leakage. The pollution characteristics in groundwater near landfill sites have been extensively investigated, although the succession characteristics and driving mechanisms of microbial communities in leachate-contaminated groundwater and the sensitive microbial indicators for leachate leakage identification remain poorly studied. Herein, results showed that leachate leakage enhanced the microbial diversity and richness and transferred endemic bacteria from landfills into groundwater, producing an average decrease of 17.73% in the relative abundance of Proteobacteria. The key environmental factor driving the evolution of microbial communities in groundwater due to leachate pollution was organic matter, which can explain 16.13% of the changes in microbial community composition. The |ßNTI| values of the bacterial communities in all six landfills were <2, and the assembly process of microbial communities was primarily dominated using stochastic processes. Leachate pollution changed the assembly mechanism, transforming the community assembly process from an undominated process to a dispersal limitation process. Leachate pollution reduced the efficiency and stability of microbial communities in groundwater, increasing the vulnerability of the stable microbial ecosystems in groundwater. Notably, microbial indicators are more sensitive to leachate leakage and could accurately identify landfills where leachate leakage occurred and other extraneous pollutants. The phylum Proteobacteria and mcrA could act as appropriate indicators for the identification of leachate leakage. These results provide a novel insight into the monitoring, identification of groundwater pollution and the scientific guidance for appropriate remediation strategies for leachate-contaminated groundwater.


Asunto(s)
Agua Subterránea , Microbiota , Eliminación de Residuos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Proteobacteria , Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Bacterias , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Pollut Res Int ; 30(14): 39871-39882, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36600159

RESUMEN

Complexes formed by organic matter and clay minerals, which are active components of soil systems, play an important role in the migration and transformation of pollutants in nature. In this study, humic-acid-montmorillonite (HA-MT) and humic-acid-kaolin (HA-KL) complexes were prepared, and their structures before and after the adsorption of aniline were analyzed. The aniline adsorption-desorption characteristics of complexes with different clay minerals and varying HA contents were explored using the static adsorption-desorption equilibrium method. Compared with the pristine clay minerals, the flaky and porous structure of the complexes and the aromaticity were enhanced. The adsorption of aniline on the different clay mineral complexes was nonlinear, and the adsorption capacity increased with increasing HA content. Additionally, the adsorption capacity of HA-MT was higher than that of HA-KL. After adsorption, the specific surface area of the complexes decreased, the surfaces became more complicated, and the aromaticity decreased because aniline is primarily adsorption onto the complexes via aromatic rings. Aniline was adsorbed onto the complexes via spontaneous exothermic physical adsorption. The amount of aniline desorbed from the complexes increased with increasing HA content, and a lag in desorption was observed, with a greater lag for HA-KL than for HA-MT.


Asunto(s)
Minerales , Suelo , Arcilla , Adsorción , Minerales/química , Suelo/química , Caolín/química , Sustancias Húmicas/análisis , Bentonita/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA