Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 360: 127586, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35798163

RESUMEN

The anatomical and histochemical characterization of pretreated substrates is essential for the further valorization of biomass during the biorefinery process. In this work, the benzenesulfonic acid (BA)-treated substrates were employed for simultaneous saccharification and fermentation (SSF) of ethanol for the first time. An ethanol yield of 50.36% was attained at 10% solids loading and 47.45 g/L of ethanol accumulated at 30 % solids loading. The dramatic improvements could result from the deconstruction of cell walls, which were evidenced by fluorescence microscope and confocal Raman microscopy spectra. Additionally, for a thorough comprehension of the inherent chemistry of lignin during the BA pretreatment, the changes in lignin structure features were identified for the first time by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). In summary, this study tried to probe the possibility of BA-treated Miscanthus for the SSF process and unveiled the mechanism of the efficient BA pretreatment.


Asunto(s)
Etanol , Lignina , Bencenosulfonatos , Biomasa , Etanol/química , Fermentación , Hidrólisis , Lignina/química
2.
RSC Adv ; 11(56): 35245-35257, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35493143

RESUMEN

Traditional air filter papers can only filter toxic aerosols without the function of decontamination. If the poison stagnating in the paper is desorbed, it may pose a secondary threat to personnel and make it more difficult to dispose of the scrapped paper. Using an alkali-free glass fiber as the base material and zirconium hydroxide as the decontaminant, a self-decontaminating air filter paper that can degrade HD and VX simultaneously was successfully prepared by an intra-pulp addition method, with high filtration efficiency, low pressure drop and moderate tensile strength. The physicochemical properties were characterized by FE-SEM, EDX, XRD and TGA, and the results indicated that Zr(OH)4 was dispersed uniformly in the paper and filled in the interstices of the glass fiber. The preparation of the composite material had no impact on the structure of fibers and Zr(OH)4. The preparation technology of the self-decontaminating air filter paper was optimized. It was found that the paper with a fiber grammage of 50 g m-2, the adhesive of 2% and a Zr(OH)4 retention rate of 175.0 wt% could completely degrade HD and VX, whose conversion rate exceeded 99.0%, and had a tensile strength of 0.1193 kN m-1, a filtration efficiency of 99.995%, and a pressure drop of 313.6 Pa. Using GC-MS to detect the decontamination products, it was speculated that HD mainly underwent hydrolysis and elimination reactions, VX mainly underwent hydrolysis and polymerization reactions, and their products were non-toxic or low-toxic. The reaction kinetics of HD and VX on the paper was investigated and the half-lives were 2.6 h and 16.2 min, respectively, which demonstrated an outstanding degradation performance. This work manifested for the first time that the air filter paper can be optimized as an efficient self-decontaminating material, which will open up new possibilities for the design and manufacture of multifunctional protective materials.

3.
Bioresour Technol ; 320(Pt A): 124327, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33157438

RESUMEN

A novel recyclable deep eutectic solvent (DES) consisting of p-toluene sulfonic acid (p-TsOH) and choline chloride (ChCl) was developed for efficient woody poplar sawdust (PL) and herbaceous miscanthus (MC) conversion at mild condition. The extraction of leftover lignin on the surface of DES pretreated residues using NaOH solution at room temperature greatly improved the enzymatic hydrolysis efficiency. Near complete cellulose conversion of PL and MC residues were obtained with a degree of delignification and xylan removal over 90% at 100 °C within 40 min. The strong correlations between xylan (R2 = 0.95) and lignin (R2 = 0.82) removal with cellulose conversion were observed in MC as well as positive correlations (R2 > 0.77) in PL. The results demonstrated that the DES system coupling NaOH post-treatment was a promising method to achieve an economically feasible biomass conversion process, which was effective for both woody PL residues and herbaceous MC.


Asunto(s)
Lignina , Plantas , Biomasa , Hidrólisis , Hidróxido de Sodio , Solventes
4.
Carbohydr Polym ; 195: 39-44, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29804991

RESUMEN

Superhydrophobic surfaces have attracted great attention due to their attractive properties. Biopolymer-based low-cost and environmentally-friendly superhydrophobic coatings with easy-to-perform fabrication methods are always desirable. Herein, we report superhydrophobic surfaces using a one-step spray-coating of chitosan-based nanoparticles. The particles were easily prepared by a nanoprecipitation strategy using synthesized organosoluble chitosan stearoyl ester (CSSE). The resulting particles had an average size of 165 ∼ 235 nm depending on the applied concentration. Subsequently, spray-coating of such particles onto silicon wafer generated a surface with a water contact angle of 155 ±â€¯1°. SEM and AFM images exhibited a nano/microscaled roughness appeared on the coated surface. The superhydrophobic surfaces showed a stable superhydrophobic performance even after storage for 15 days, pH stability between pH 1 to pH 11 and thermal stability until a temperature no more than 50 °C. These properties would broaden the application fields of superhydrophobic surfaces as well as the chitosan itself.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA