Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Gene Ther ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210030

RESUMEN

Cholangiocarcinoma (CCA), known for its aggressive nature, poses a formidable challenge in the current medical landscape, particularly in targeted therapies. Against this backdrop, long non-coding RNAs (lncRNAs) have captured the attention of researchers. These unique RNAs are believed to play pivotal roles in various cancers, offering promising avenues for the development of more effective treatment strategies. Previous studies have substantiated the aberrant expression of the APCDD1L-DT in numerous human tumors, demonstrating its positive regulatory roles in disease progression. Nevertheless, the biological functions of APCDD1L-DT in CCA are still not fully understood. This study marks the inaugural documentation of APCDD1L-DT exhibiting aberrant expression in CCA specimen, establishing a close correlation with the TNM staging of tumor patients. Furthermore, suppressing APCDD1L-DT expression hinders both the viability and motility of tumor cells. Mechanistically, the abnormal activation of the transcription factor ZNF460 positively regulated APCDD1L-DT expression in CCA. This activation, in turn, propels the abnormal activation of the Wnt pathway, fostering tumor development by impeding the ubiquitin-mediated degradation of DVL2. Broadly speaking, this study provides auspicious perspectives for comprehending CCA and furnishes support for addressing this daunting malignancy.

2.
Front Nutr ; 11: 1426780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021599

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic liver disease that progresses from hepatic steatosis to non-alcoholic steatohepatitis, cirrhosis, and liver cancer, posing a huge burden on human health. Existing research has confirmed that forkhead box O1 (FOXO1), as a member of the FOXO transcription factor family, is upregulated in MAFLD. Its activity is closely related to nuclear-cytoplasmic shuttling and various post-translational modifications including phosphorylation, acetylation, and methylation. FOXO1 mediates the progression of MAFLD by regulating glucose metabolism, lipid metabolism, insulin resistance, oxidative stress, hepatic fibrosis, hepatocyte autophagy, apoptosis, and immune inflammation. This article elaborates on the regulatory role of FOXO1 in MAFLD, providing a summary and new insights for the current status of drug research and targeted therapies for MAFLD.

3.
Cell Signal ; 118: 111141, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492624

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy with an extremely poor prognosis, and much remains unknown about its pathogenesis and treatment modalities. Circular RNA (circRNA) has been proven to play regulatory roles in various tumorigenesis, yet its potential function and mechanism in cholangiocarcinoma require further investigation. This study is the first to identify the aberrant expression and functional role of a novel circRNA, circ_0007534, derived from the DDX42 gene, in cholangiocarcinoma. Compared to the normal control group, the expression of circ_0007534 was significantly elevated in the tissues and cells with CCA and that high expression correlated with lymph node invasion and poor prognosis. Functional experiments indicated that downregulating circ_0007534 markedly inhibited the proliferation, migration, invasion, stemness, and anti-anoikis ability of CCA cells, as well as the tumor growth and liver and lung metastasis in nude mice. Mechanistic studies revealed that DDX42, as the parent gene of circ_0007534, can mutually regulate each other's expression. Predominantly located in the cytoplasm, circ_0007534 can form a complex with the RNA-binding protein DDX3X, which enhances the stability of DDX42 mRNA, thereby upregulating the expression of DDX42. This creates a positive feedback loop among the three, collectively promoting the progression of cholangiocarcinoma. In conclusion, this study sheds light on the pivotal role and molecular mechanism of circ_0007534 in the development of CCA, offering potential new targets for early diagnosis and treatment.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Anoicis , Ratones Desnudos , Retroalimentación , Línea Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética
4.
Cancer Gene Ther ; 31(4): 552-561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267625

RESUMEN

This study thoroughly investigated the role of the long non-coding RNA LOXL1-AS1 in the pathogenesis of cholangiocarcinoma (CCA). Through bioinformatics analysis and tissue samples validation, the study found that LOXL1-AS1 was significantly elevated in CCA, with its high expression closely tied to clinical pathological features and prognosis. In vitro and in vivo experiments revealed that LOXL1-AS1 was crucial in regulating CCA cell apoptosis, proliferation, migration, and invasion. Further investigations using FISH, subcellular localization experiments, RNA pull down, and RIP uncovered that LOXL1-AS1 primarily resided in the cytoplasm and influenced CCA progression by modulating the JAK2/STAT3 signaling pathway. Notably, LOXL1-AS1 might regulate the activity of JAK2 through modulating its ubiquitination and degradation. YY1 had also been found to act as an upstream transcription factor of LOXL1-AS1 to impact CCA cell malignancy. These findings shed light on the pivotal role of LOXL1-AS1 in CCA and offered potential directions for novel therapeutic strategies, providing a fresh perspective on tumor pathogenesis.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , ARN Largo no Codificante , Factor de Transcripción STAT3 , Humanos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
5.
Environ Toxicol ; 38(11): 2632-2644, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37466171

RESUMEN

Biliary tract cancer (BTC) is a devastating malignancy that is notoriously difficult to diagnose and is associated with high mortality. Circular RNA (circRNA) is a class of endogenous non-coding RNA which has been regarded as the key regulator of tumor initiation and progression, including BTC. Circular RNA nuclear receptor interacting protein 1 (circ_NRIP1), as a circular RNA, is abnormally expressed in many human tumors and exhibits diverse functions in cancer progression. However, its biological significance in BTC has not been thoroughly investigated. In this research, we elucidated that circ_NRIP1 was notably overexpressed in both BTC tissues and cells. We further established a correlation between circ_NRIP1 expression and clinicopathological features in BTC patients, highlighting its clinical relevance. Through functional assays, we observed that knockdown of circ_NRIP1 significantly inhibited tumor cell proliferation, invasion, stemness maintenance, and epithelial-mesenchymal transition, indicating its active involvement in promoting BTC progression. Additionally, it attenuated growth of xenograft and metastasis models. Mechanically, we revealed that circ_NRIP1 served as the competing endogenous RNA to sequester miR-515-5p through complementary base pairing mechanism, thereby upregulated AKT2 expression and indirectly activated PI3K/AKT/mTOR signaling pathway. Generally, targeting the circ_NRIP1/miR-515-5p/AKT2 axis and aberrant activation of the PI3K/AKT/mTOR pathway may hold promising therapeutic strategies for BTC. Our research contributes to a better understanding of the underlying biological basis of BTC and paves the way for the development of innovative treatment approaches.


Asunto(s)
Neoplasias del Sistema Biliar , MicroARNs , Humanos , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transición Epitelial-Mesenquimal/genética , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular/genética , Neoplasias del Sistema Biliar/genética , Movimiento Celular
6.
Pathol Res Pract ; 241: 154282, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36580797

RESUMEN

Circular RNAs (circRNAs), a novel type of covalently closed non-coding RNAs, are widely expressed in eukaryotes and viruses. Accumulating evidence has shown that circRNAs play key roles in the pathophysiological changes process of human diseases and can affect cancer development and progression through regulating target genes expression, linear RNA transcription and protein generation. Recent studies had found that circRNA-UBAP2 (ubiquitin binding associated protein 2) was aberrantly expressed in various human tumors and could affect tumor cells proliferation, migration, invasion, cell cycle, anti-apoptosis, radioresistance, chemoresistance and other malignant biological behavioral progress. Mechanistic studies further revealed that circUBAP2 could affect the occurrence and development of human tumors through multiple different molecular regulatory pathways in vivo and in vitro. In addition, the abnormal expression of circUBAP2 was significantly correlated with the clinicopathological characteristics of malignant tumors and had potential value as biomarkers for the diagnosis and prognosis evaluation of cancer patients, which deserved further study. This review had summarized and discussed the oncogenic roles and clinical performances of circUBAP2 in various human malignancies with a focus on biological functions and molecular mechanisms, which could help to elevate the understanding to the roles of circRNAs and continue subsequent studies on circUBAP2.


Asunto(s)
Neoplasias , ARN Circular , Humanos , Neoplasias/genética , Pronóstico , ARN/genética , ARN Circular/genética , Ubiquitinas , Proteínas Portadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...