Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Scanning ; 2022: 3477886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016673

RESUMEN

Objective: Our study is aimed at preparing an experimental adhesive (EA) and assessing the influence of adding 5-10 wt.% concentrations of zinc oxide (ZnO) nanoparticles on the adhesive's mechanical properties. Methods: Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopy were employed to investigate the morphology and elemental distribution of the filler nanoparticles. To examine the adhesive properties, microtensile bond strength (µTBS) testing, an investigation of the rheological properties, degree of conversion (DC), and analysis of the interface between the adhesive and dentin were carried out. Results: The SEM micrographs of ZnO nanoparticles demonstrated spherical agglomerates. The EDX plotting confirmed the incidence of Zn and oxygen (O) in the ZnO nanoparticles. The highest µTBS was observed for nonthermocycled (NTC) 5 wt.% ZnO group (32.11 ± 3.60 MPa), followed by the NTC-10 wt.% ZnO group (30.04 ± 3.24 MPa). Most of the failures observed were adhesive in nature. A gradual reduction in the viscosity was observed at higher angular frequencies, and the addition of 5 and 10 wt.% ZnO to the composition of the EA lowered its viscosity. The 5 wt.% ZnO group demonstrated suitable dentin interaction by showing the formation of resin tags, while for the 10 wt.% ZnO group, compromised resin tag formation was detected. DC was significantly higher in the 0% ZnO (EA) group. Conclusion: The reinforcement of the EA with 5 and 10 wt.% concentrations of ZnO nanoparticles produced an improvement in the adhesive's µTBS. However, a reduced viscosity was observed for both nanoparticle-reinforced adhesives, and a negotiated dentin interaction was seen for 10 wt.% ZnO adhesive group. Further research exploring the influence of more filler concentrations on diverse adhesive properties is recommended.


Asunto(s)
Recubrimiento Dental Adhesivo , Óxido de Zinc , Adhesivos/análisis , Resinas Compuestas/química , Cementos Dentales , Dentina , Recubrimientos Dentinarios , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Cementos de Resina/análisis , Cementos de Resina/química , Resistencia a la Tracción , Óxido de Zinc/análisis , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...