Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Transl Lung Cancer Res ; 12(2): 257-265, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36895920

RESUMEN

Background: Identifying a circulating biomarker predictive of immune checkpoint inhibitor (ICI) benefit in patients with small cell lung cancer (SCLC) remains an unmet need. Characteristics of peripheral and intratumoral T-cell receptor (TCR) repertoires have been shown to predict clinical outcomes in non-small cell lung cancer (NSCLC). Recognizing a knowledge gap, we sought to characterize circulating TCR repertoires and their relationship with clinical outcomes in SCLC. Methods: SCLC patients with limited (n=4) and extensive (n=10) stage disease were prospectively enrolled for blood collection and chart review. Targeted next-generation sequencing of TCR beta and alpha chains of peripheral blood samples was performed. Unique TCR clonotypes were defined by identical CDR3, V gene, and J gene nucleotide sequences of the beta chain and subsequently used to calculate TCR diversity indices. Results: Patients with stable versus progressive and limited versus extensive stage disease did not demonstrate significant differences in V gene usage. Kaplan-Meier curve and log-rank analysis did not identify a statistical difference in progression-free survival (PFS) (P=0.900) or overall survival (OS) (P=0.200) between high and low on-treatment TCR diversity groups, although the high diversity group exhibited a trend toward increased OS. Conclusions: We report the second study investigating peripheral TCR repertoire diversity in SCLC. With a limited sample size, no statistically significant associations between peripheral TCR diversity and clinical outcomes were observed, though further study is warranted.

4.
JTO Clin Res Rep ; 2(3): 100110, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34589992

RESUMEN

INTRODUCTION: Blood-based next-generation sequencing assays of circulating tumor DNA (ctDNA) have the ability to detect tumor-associated mutations in patients with SCLC. We sought to characterize the relationship between ctDNA mean variant allele frequency (VAF) and radiographic total-body tumor volume (TV) in patients with SCLC. METHODS: We identified matched blood draws and computed tomography (CT) or positron emission tomography (PET) scans within a prospective SCLC blood banking cohort. We sequenced plasma using our previously developed 14-gene SCLC-specific ctDNA assay. Three-dimensional TV was determined from PET and CT scans using MIM software and reviewed by radiation oncologists. Univariate association and multivariate regression analyses were performed to evaluate the association between mean VAF and total-body TV. RESULTS: We analyzed 75 matched blood draws and CT or PET scans from 25 unique patients with SCLC. Univariate analysis revealed a positive association between mean VAF and total-body TV (Spearman's ρ = 0.292, p < 0.01), and when considering only treatment-naive and pretreatment patients (n = 11), there was an increase in the magnitude of association (ρ = 0.618, p = 0.048). The relationship remained significant when adjusting for treatment status and bone metastases (p = 0.046). In the subgroup of patients with TP53 variants, univariate analysis revealed a significant association (ρ = 0.762, p = 0.037) only when considering treatment-naive and pretreatment patients (n = 8). CONCLUSIONS: We observed a positive association between mean VAF and total-body TV in patients with SCLC, suggesting mean VAF may represent a dynamic biomarker of tumor burden that could be followed to monitor disease status.

5.
JTO Clin Res Rep ; 2(4): 100151, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34590008

RESUMEN

INTRODUCTION: Remote consent and enrollment offer a unique opportunity to provide rare cancer populations with access to clinical research. The genomic analysis of plasma cell-free DNA (cfDNA) permits remote characterization of the cancer genome. We hypothesized we could leverage these approaches to remotely study drug resistance in patients with metastatic ALK-positive NSCLC. METHODS: The SPACEWALK study (Study of Plasma Next-Generation Sequencing for Remote Assessment, Characterization, Evaluation of Patients With ALK Drug Resistance) enrolled patients with ALK-positive NSCLC and progression on a next-generation ALK inhibitor who could participate remotely. Plasma was collected for next-generation sequencing (NGS) of cfDNA before initiating subsequent therapy, with results returned and subsequent therapy studied. RESULTS: Of the 62 patients enrolled, an ALK fusion was detected in 27 (44%) with a median allelic fraction of 2.6%. Among these 27 patients, a potential resistance mechanism was identified in 17 patients (63%): eight cases (30%) had secondary ALK kinase domain resistance mutations, three cases (11%) had bypass track resistance, and six cases (22%) had both ALK resistance mutations and bypass resistance. The most frequently detected mechanism of bypass resistance was MET amplification. Repeat plasma NGS was performed in 14 patients after subsequent treatment was initiated, with seven (50%) patients exhibiting greater than 50% reductions in ALK fusion allelic fraction. CONCLUSIONS: Through the leveraging of remote participation, plasma NGS offers an optimal mechanism for characterizing resistance to emerging targeted therapies in rare cancer populations, though sensitivity depends on adequate tumor DNA samples. Repeat cfDNA analysis on therapy may offer an objective monitoring approach to remotely study treatment response.

6.
Lung Cancer ; 159: 66-73, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34311346

RESUMEN

OBJECTIVES: Liquid biopsy for plasma circulating tumor DNA (ctDNA) next-generation sequencing (NGS) can detect ALK fusions, though data on clinical utility of this technology in the real world is limited. MATERIALS AND METHODS: Patients with lung cancer without known oncogenic drivers or who had acquired resistance to therapy (n = 736) underwent prospective plasma ctDNA NGS. A subset of this cohort (n = 497) also had tissue NGS. We evaluated ALK fusion detection, turnaround time (TAT), plasma and tissue concordance, matching to therapy, and treatment response. RESULTS: ctDNA identified an ALK fusion in 21 patients (3%) with a variety of breakpoints and fusion partners, including EML4, CLTC, and PON1, a novel ALK fusion partner. TAT for ctDNA NGS was shorter than tissue NGS (10 vs. 20 days; p < 0.001). Among ALK fusions identified by ctDNA, 93% (13/14, 95% CI 66%-99%) were concordant with tissue evaluation. Among ALK fusions detected by tissue NGS, 54% (13/24, 95% CI 33%-74%) were concordant with plasma ctDNA. ctDNA matched patients to ALK-directed therapy with subsequent clinical response, including four patients matched on the basis of ctDNA results alone due to inadequate or delayed tissue testing. Serial ctDNA analysis detected MET amplification (n = 2) and ALK G1202R mutation (n = 2) as mechanisms of acquired resistance to ALK-directed therapy. CONCLUSION: Our findings support a complementary role for ctDNA in detection of ALK fusions and other alterations at diagnosis and therapeutic resistance settings.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Arildialquilfosfatasa , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutación , Estudios Prospectivos , Proteínas Tirosina Quinasas Receptoras/genética
7.
JTO Clin Res Rep ; 1(2): 100024, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34589931

RESUMEN

INTRODUCTION: Most patients (70%) with limited-stage SCLC (LS-SCLC) who are treated with curative-intent therapy suffer disease relapse and cancer-related death. We evaluated circulating tumor DNA (ctDNA) as a predictor of disease relapse and death after definitive therapy in patients with LS-SCLC. METHODS: In our previous work, we developed a plasma-based ctDNA assay to sequence 14 genes (TP53, RB1, BRAF, KIT, NOTCH1-4, PIK3CA, PTEN, FGFR1, MYC, MYCL1, and MYCN) that are frequently mutated in SCLC. In this work, we evaluated 177 plasma samples from 23 patients with LS-SCLC who completed definitive chemoradiation (n = 21) or surgical resection (n = 2) and had an end-of-treatment blood collection (median 4 d, range 0-40 d from treatment completion) plus monthly surveillance blood sampling. Median overall survival (OS) and progression-free survival (PFS) were compared using a Wilcoxon test. RESULTS: The median OS among patients in whom we ever detected ctDNA after definitive treatment (n = 15) was 18.2 months compared with a median OS of greater than 48 months among patients in whom we never detected ctDNA after definitive treatment (n = 8; p = 0.081). The median PFS among patients in whom we ever detected ctDNA after definitive treatment was 9.1 months compared with a median PFS of greater than 48 months among patients in whom we never detected ctDNA after definitive treatment (p < 0.001). CONCLUSIONS: Detection of ctDNA in patients with LS-SCLC after curative-intent therapy predicts disease relapse and death. Prospective trials using ctDNA as an integral biomarker for therapeutic selection should be considered in SCLC.

8.
J Thorac Oncol ; 14(11): 1901-1911, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446141

RESUMEN

INTRODUCTION: Despite initial effectiveness of ALK receptor tyrosine kinase inhibitors (TKIs) in patients with ALK+ NSCLC, therapeutic resistance will ultimately develop. Serial tracking of genetic alterations detected in circulating tumor DNA (ctDNA) can be an informative strategy to identify response and resistance. This study evaluated the utility of analyzing ctDNA as a function of response to ensartinib, a potent second-generation ALK TKI. METHODS: Pre-treatment plasma was collected from 76 patients with ALK+ NSCLC who were ALK TKI-naive or had received prior ALK TKI, and analyzed for specific genetic alterations. Longitudinal plasma samples were analyzed from a subset (n = 11) of patients. Analysis of pre-treatment tumor biopsy specimens from 22 patients was compared with plasma. RESULTS: Disease-associated genetic alterations were detected in 74% (56 of 76) of patients, the most common being EML4-ALK. Concordance of ALK fusion between plasma and tissue was 91% (20 of 22 blood and tissue samples). Twenty-four ALK kinase domain mutations were detected in 15 patients, all had previously received an ALK TKI; G1269A was the most prevalent (4 of 24). Patients with a detectable EML4-ALK variant 1 (V1) fusion had improved response (9 of 17 patients; 53%) to ensartinib compared to patients with EML4-ALK V3 fusion (one of seven patients; 14%). Serial changes in ALK alterations were observed during therapy. CONCLUSIONS: Clinical utility of ctDNA was shown, both at pre-treatment by identifying a potential subgroup of ALK+ NSCLC patients who may derive more benefit from ensartinib and longitudinally by tracking resistance. Prospective application of this technology may translate to improved outcomes for NSCLC patients treated with ALK TKIs.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Piperazinas/uso terapéutico , Piridazinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/sangre , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Pulmonares/sangre , Masculino , Persona de Mediana Edad , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Pronóstico , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Genet Med ; 21(2): 477-486, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29955105

RESUMEN

PURPOSE: Rh antigens can provoke severe alloimmune reactions, particularly in high-risk transfusion contexts, such as sickle cell disease. Rh antigens are encoded by the paralogs, RHD and RHCE, located in one of the most complex genetic loci. Our goal was to characterize RH genetic variation in multi-ethnic cohorts, with the focus on detecting RH structural variation (SV). METHODS: We customized analytical methods to estimate paralog-specific copy number from next-generation sequencing (NGS) data. We applied these methods to clinically characterized samples, including four World Health Organization (WHO) genotyping references and 1135 Asian and Native American blood donors. Subsequently, we surveyed 1715 African American samples from the Jackson Heart Study. RESULTS: Most samples in each dataset exhibited SV. SV detection enabled prediction of the immunogenic RhD and RhC antigens in concordance (>99%) with serological phenotyping. RhC antigen expression was associated with exon 2 hybrid alleles (RHCE*CE-D(2)-CE). Clinically relevant exon 4-7 hybrid alleles (RHD*D-CE(4-7)-D) and exon 9 hybrid alleles (RHCE*CE-D(9)-CE) were prevalent in African Americans. CONCLUSION: This study shows custom NGS methods can accurately detect RH SV, and that SV is important to inform prediction of relevant RH alleles. Additionally, this study provides the first large NGS survey of RH alleles in African Americans.


Asunto(s)
Anemia de Células Falciformes/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Sistema del Grupo Sanguíneo Rh-Hr/genética , Negro o Afroamericano/genética , Alelos , Anemia de Células Falciformes/epidemiología , Anemia de Células Falciformes/fisiopatología , Pueblo Asiatico/genética , Variaciones en el Número de Copia de ADN/genética , Etnicidad/genética , Femenino , Variación Estructural del Genoma/genética , Humanos , Indígenas Norteamericanos/genética , Masculino , Sistema del Grupo Sanguíneo Rh-Hr/química , Sistema del Grupo Sanguíneo Rh-Hr/inmunología , Organización Mundial de la Salud
10.
J Natl Cancer Inst ; 111(6): 575-583, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496436

RESUMEN

BACKGROUND: Liquid biopsy for plasma circulating tumor DNA (ctDNA) next-generation sequencing (NGS) is commercially available and increasingly adopted in clinical practice despite a paucity of prospective data to support its use. METHODS: Patients with advanced lung cancers who had no known oncogenic driver or developed resistance to current targeted therapy (n = 210) underwent plasma NGS, targeting 21 genes. A subset of patients had concurrent tissue NGS testing using a 468-gene panel (n = 106). Oncogenic driver detection, test turnaround time (TAT), concordance, and treatment response guided by plasma NGS were measured. All statistical tests were two-sided. RESULTS: Somatic mutations were detected in 64.3% (135/210) of patients. ctDNA detection was lower in patients who were on systemic therapy at the time of plasma collection compared with those who were not (30/70, 42.9% vs 105/140, 75.0%; OR = 0.26, 95% CI = 0.1 to 0.5, P < .001). The median TAT of plasma NGS was shorter than tissue NGS (9 vs 20 days; P < .001). Overall concordance, defined as the proportion of patients for whom at least one identical genomic alteration was identified in both tissue and plasma, was 56.6% (60/106, 95% CI = 46.6% to 66.2%). Among patients who tested plasma NGS positive, 89.6% (60/67; 95% CI = 79.7% to 95.7%) were also concordant on tissue NGS and 60.6% (60/99; 95% CI = 50.3% to 70.3%) vice versa. Patients who tested plasma NGS positive for oncogenic drivers had tissue NGS concordance of 96.1% (49/51, 95% CI = 86.5% to 99.5%), and directly led to matched targeted therapy in 21.9% (46/210) with clinical response. CONCLUSIONS: Plasma ctDNA NGS detected a variety of oncogenic drivers with a shorter TAT compared with tissue NGS and matched patients to targeted therapy with clinical response. Positive findings on plasma NGS were highly concordant with tissue NGS and can guide immediate therapy; however, a negative finding in plasma requires further testing. Our findings support the potential incorporation of plasma NGS into practice guidelines.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Tumoral Circulante/genética , Neoplasias Pulmonares/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/terapia , ADN Tumoral Circulante/sangre , Femenino , Técnicas de Genotipaje , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biopsia Líquida , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Mutación , Medicina de Precisión , Estudios Prospectivos
11.
Nature ; 461(7261): 272-6, 2009 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-19684571

RESUMEN

Genome-wide association studies suggest that common genetic variants explain only a modest fraction of heritable risk for common diseases, raising the question of whether rare variants account for a significant fraction of unexplained heritability. Although DNA sequencing costs have fallen markedly, they remain far from what is necessary for rare and novel variants to be routinely identified at a genome-wide scale in large cohorts. We have therefore sought to develop second-generation methods for targeted sequencing of all protein-coding regions ('exomes'), to reduce costs while enriching for discovery of highly penetrant variants. Here we report on the targeted capture and massively parallel sequencing of the exomes of 12 humans. These include eight HapMap individuals representing three populations, and four unrelated individuals with a rare dominantly inherited disorder, Freeman-Sheldon syndrome (FSS). We demonstrate the sensitive and specific identification of rare and common variants in over 300 megabases of coding sequence. Using FSS as a proof-of-concept, we show that candidate genes for Mendelian disorders can be identified by exome sequencing of a small number of unrelated, affected individuals. This strategy may be extendable to diseases with more complex genetics through larger sample sizes and appropriate weighting of non-synonymous variants by predicted functional impact.


Asunto(s)
Exones/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Variación Genética/genética , Genoma Humano/genética , Análisis de Secuencia de ADN/métodos , Frecuencia de los Genes/genética , Biblioteca de Genes , Genes Dominantes/genética , Haplotipos/genética , Humanos , Mutación INDEL/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple/genética , Sitios de Empalme de ARN/genética , Tamaño de la Muestra , Sensibilidad y Especificidad , Síndrome
12.
Hum Hered ; 66(4): 199-209, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18612205

RESUMEN

BACKGROUND/AIMS: Lp(a) levels have long been recognized as a potential risk factor for coronary heart disease that is almost completely under genetic control. Much of the genetics impacting Lp(a) levels has been attributed to the highly polymorphic LPA kringle IV-2 copy number variant, and most of the variance in Lp(a) levels in populations of European-descent is inversely correlated with kringle IV copy number. However, less of the variance is explained in African-descent populations for the same structural variation. African-descent populations have, on average, higher levels of Lp(a), suggesting other genetic factors contribute to Lp(a) level variability across populations. METHODS: To identify potential cis-acting factors, we re-sequenced the gene LPA for single nucleotide polymorphism (SNP) discovery in 23 European-Americans and 24 African-Americans. We also re- sequenced the neighboring gene plasminogen (PLG) and genotyped the kringle IV copy number variant in the same reference samples. RESULTS: These data are the most comprehensive description of sequence variation in LPA and its relationship with the kringle IV copy number variant. With these data, we demonstrate that only a fraction of LPA sequence diversity has been previously documented. Also, we identify several high frequency SNPs present in the African-American sample but absent in the European-American sample. Finally, we show that SNPs within PLG are not in linkage disequilibrium with SNPs in LPA, and we show that kringle IV copy number variation is not in linkage disequilibrium with either LPA or PLG SNPs. CONCLUSIONS: Together, these data suggest that LPA SNPs could independently contribute to Lp(a) levels in the general population.


Asunto(s)
Dosificación de Gen , Variación Genética , Kringles/genética , Lipoproteína(a)/genética , Plasminógeno/genética , Análisis de Secuencia de ADN , Negro o Afroamericano/genética , Alelos , Población Negra/genética , Frecuencia de los Genes , Humanos , Desequilibrio de Ligamiento , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Población Blanca/genética
13.
Nature ; 421(6923): 601-7, 2003 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-12508121

RESUMEN

Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps. Two loci of crucial importance for the immune system, as well as more than 60 disease genes, have been localized so far on chromosome 14. We identified 1,050 genes and gene fragments, and 393 pseudogenes. On the basis of comparisons with other vertebrate genomes, we estimate that more than 96% of the chromosome 14 genes have been annotated. From an analysis of the CpG island occurrences, we estimate that 70% of these annotated genes are complete at their 5' end.


Asunto(s)
Cromosomas Humanos Par 14/genética , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN , Regiones no Traducidas 5'/genética , Animales , Composición de Base , Cromosomas Artificiales/genética , Islas de CpG/genética , ADN Mitocondrial/genética , ADN Ribosómico/genética , Genes/genética , Genómica , Humanos , Inmunidad/genética , Ratones , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Seudogenes/genética , Reproducibilidad de los Resultados , Sintenía/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA