Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Parasitol ; : 108800, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043326

RESUMEN

The infectivity of Leishmania is determined by its ability to invade and evade host and its thriving capacity within the macrophage. Our study revealed the role of Leishmania donovani mevalonate kinase (MVK), an enzyme of mevalonate pathway in visceral leishmaniasis pathogenesis. Peritoneal exudate cells (PEC)-derived macrophages from BALB/c mice were infected with wild type (WT), MVK over expressing (MVK OE) and knockdown (KD) parasites and MVK OE parasites were found to be more infective than WT and MVK KD parasites. Incubation of macrophages with MVK OE parasites declined inducible nitric oxide synthase (iNOS) expression as well as nitric oxide (NO) production, both by 2 times in comparison to WT parasites. Moreover, ∼3 fold increase in Arginase1 expression indicated that MVK might induce polarization of macrophage towards M2, favouring the survival of parasite within the macrophages. Post 24 h infection of the macrophages with mutant strains, the levels of different cytokines (TNF-α, IL-12, IL-10 and IFN-γ) were measured. Infection of macrophages with MVK OE parasites showed an increase in the level of anti-inflammatory cytokine: IL-10 while infection with MVK KD parasites exhibited an increase in the level of pro-inflammatory cytokines: TNF-α, IL-12, and IFN-γ. Hence, Leishmania donovani mevalonate kinase (LdMVK) modulates macrophage functions and has a significant role in pathogenesis.

2.
Microbiol Res ; 251: 126837, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34375804

RESUMEN

Leishmaniasis comprises of a wide variety of diseases, caused by protozoan parasite belonging to the genus Leishmania. Leishmania parasites undergo different types of stress during their lifetime and have developed strategies to overcome this damage. Identifying the mechanistic approach used by the parasite in dealing with the stress is of immense importance for unfolding the survival strategy adopted by the parasite. Mevalonate kinase (MVK) is an important regulatory factor in the mevalonate pathway in both bacteria and eukaryotes. In this study, we explored the role of Leishmania donovani mevalonate kinase (LdMVK) in parasite survival under stress condition. Hydrogen peroxide (H2O2) and menadione, the two known oxidants were used to carry out the experiments. The MVK expression was found to be up regulated ∼2.1 fold and ∼2.3 fold under oxidative stress condition and under the effect of anti-Leishmania drug, AmBisome respectively. The cell viability declined under the effect of MVK inhibitor viz: vanadyl sulfate (VS). The level of intracellular ROS was also found to be increased under the effect of MVK inhibitor. To confirm the findings, LdMVK over expression (LdMVK OE) and LdMVK knockdown (LdMVK KD) parasites were generated. The level of ergosterol, an important component of plasma membrane in L. donovani, was observed and found to be reduced by nearly 60 % in LdMVK KD parasite and increased by nearly 30 % in LdMVK OE parasites as compared to wild type. However, the ergosterol content was found to be elevated under oxidative stress. Furthermore, LdMVK was also found to be associated with maintaining the plasma membrane integrity and also in preventing the peroxidation of cellular lipids when exposed to oxidative stress. The above data clearly suggests that MVK has a vital role in protecting the parasite from oxidative stress. These findings may also explore the contribution of LdMVK in drug unresponsiveness which may help in future rational drug designing for leishmaniasis.


Asunto(s)
Ergosterol , Leishmania donovani , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , Ergosterol/biosíntesis , Peróxido de Hidrógeno/toxicidad , Leishmania donovani/enzimología , Leishmania donovani/metabolismo , Estrés Oxidativo/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
3.
J Cell Biochem ; 122(10): 1413-1427, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34101889

RESUMEN

Adenosine 3',5'-cyclic monophosphate (cAMP) is a stress sensor molecule that transduces the cellular signal when Leishmania donovani moves from insect vector to mammalian host. At this stage, the parasite membrane-bound receptor adenylate cyclase predominantly produces cAMP to cope with the oxidative assault imposed by host macrophages. However, the role of soluble adenylate cyclase of L. donovani (LdHemAC) has not been investigated fully. In the present investigation, we monitored an alternative pool of cAMP, maintained by LdHemAC. The elevated cAMP effectively transmits signals by binding to Protein Kinase A (PKA) present in the cytosol and regulates antioxidant gene expression and phosphorylates several unknown PKA substrate proteins. Menadione-catalyzed production of reactive oxygen species (ROS) mimics host oxidative condition in vitro in parasites where cAMP production and PKA activity were found increased by ~1.54 ± 0.35, and ~1.78 ± 0.47-fold, respectively while expression of LdHemAC gene elevated by ~2.18 ± 0.17-fold. The LdHemAC sense these oxidants and became activated to cyclize ATP to enhance the cAMP basal level that regulates antioxidant gene expression to rescue parasites from oxidative stress. In knockdown parasites (LdHemAC-KD), the downregulated antioxidant genes expression, namely, Sod (2.30 ± 0.46), Pxn (2.73 ± 0.15), Tdr (2.7 ± 0.12), and Gss (1.57 ± 0.15) results in decreased parasite viability while in overexpressed parasites (LdHemAC-OE), the expression was upregulated by ~5.7 ± 0.35, ~2.57 ± 0.56, ~4.7 ± 0.36, and ~2.4 ± 0.83, respectively, which possibly overcomes ROS accumulation and enhances viability. Furthermore, LdHemAC-OE higher PKA activity regulates phosphorylation of substrate proteins (~56 kDs in membrane fraction and ~25 kDs in the soluble fraction). It reduced significantly when treated with inhibitors like DDA, Rp-cAMP, and H-89 and increased by ~2.1 ± 0.28-fold, respectively under oxidative conditions. The LdHemAC-KD was found less infective to RAW 264.7 macrophages and more prone to oxidative damage as compared to LdHemAC-OE and control parasites. Together, this study demonstrates mechanistic links among LdHemAC, cAMP, and PKA in parasite survival and invasion under host oxidative condition.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Leishmania donovani/enzimología , Macrófagos/fisiología , Oxidantes/farmacología , Estrés Oxidativo/fisiología , Adenilil Ciclasas/genética , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Leishmania donovani/efectos de los fármacos , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis/metabolismo , Leishmaniasis/parasitología , Leishmaniasis/patología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Oxidación-Reducción , Fagocitosis , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...