Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Intervalo de año de publicación
1.
BMC Chem ; 18(1): 61, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555438

RESUMEN

A rapid and efficient analytical method was established to quantify indoxyl sulfate (IS) in plasma through extraction technique with a deep eutectic solvent (DES) and spectrofluorimetric method. DES (choline chloride: urea) was mixed with plasma samples for the extraction of IS, followed by the addition of dipotassium hydrogen phosphate (K2HPO4) solution to form an aqueous two-phase system. The fluorescence intensity of IS which was first extracted to the DES-rich-phase and then back-extracted into the salt-rich-phase, was measured by spectrofluorimetric method. Some key factors such as pH, centrifugation speed and time, the volume ratio of DES/salt, and salt concentration were optimized. Under the optimized conditions, the suggested method had a dynamic range between 20 and 160 µg/mL with a coefficient of determination (R2) of 0.99. Precision (relative standard deviation) was less than 15% and accuracy (% relative recovery) was ± 15% at the nominal concentration level. In addition, results showed that IS levels in real samples were higher than 40 µg/mL which was compatible with reported IS levels in end-stage renal disease (ESRD) patients. Overall, all the results reflect the fact that the presented analytical method can potentially be used for the determination of IS in real plasma samples.

2.
Eur J Pharm Sci ; 168: 106005, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688823

RESUMEN

Rosuvastatin (ROS) is an anti-cholesterol drug belonging to statin drugs. A multi-spectroscopic approach combined with a molecular modeling technique was used to assess ROS association with human serum albumin (HSA). Besides, an HSA immobilized surface plasmon resonance (SPR) chip was used to obtain kinetic parameters (ka, kd, and KD). Fluorescence quenching titrations revealed that ROS interacts with HSA via a dynamic, exothermic, enthalpy-driven mechanism. Hydrogen bonds and van der Waals interactions as the most prevalent bonding forces contribute to ROS-HSA complex formation. ROS binding to HSA alters HSA conformation. The SPR results indicated that ROS and HSA have a strong interaction possessing an equilibrium constant (KD) of 1.55 × 10-8 M at 298 K. A competitive analysis of site markers showed that ROS has a higher tendency to bind to the warfarin binding site (site IIA), which may explain why warfarin has a higher anticoagulant effect in ROS users. FRET analysis indicated that non-radiation energy transfer occurred between ROS and HSA. According to molecular docking studies, ROS prefers binding sites IB and IIA while the ROS-HSA complex stabilizes due to the hydrogen bond and π-π interaction. The presence of hydrogen-bond donors and acceptors, as well as aromatic ROS moieties, facilitates such interactions.


Asunto(s)
Albúmina Sérica Humana , Resonancia por Plasmón de Superficie , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Rosuvastatina Cálcica , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , Termodinámica
3.
Cell Biol Int ; 46(4): 512-522, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34918417

RESUMEN

In recent years, stem cells have known as a helpful biological tool for the accurate diagnosis, treatment and recognition of diseases. Using stem cells as biomarkers have presented high potential in the early detection of many diseases. Another advancement in stem cell technology includes stem cell derived organoids model that could be a promising platform for diagnosis and modeling different diseases. Furthermore, therapeutic capabilities of stem cell therapy have increased hope in the face of different disability managements. All of these technologies are also widely used in reproductive related diseases especially in today's world that many couples encounter infertility problems. However, with the aid of numerous improvements in the treatment of infertility, over 80% of couples who dreamed of having children could now have children. Due to the fact that infertility has many negative effects on personal and social lives of young couples, many researchers have focused on the treatment of male and female reproductive system abnormalities with different types of stem cells, including embryonic stem cells, bone marrow mesenchymal stem cells (MSCs), and umbilical cord-derived MSCs. Also, design and formation of reproductive system organoids provide a fascinating window into disease modeling, drug screening, personalized therapy, and regeneration medicine. Utilizing these techniques to study, model and treat the infertility-related diseases has drawn attention of many scientists. This review explains different applications of stem cells in generating reproductive system organoids and stem cell-based therapies for male and female infertility related diseases treatment.


Asunto(s)
Infertilidad Femenina , Organoides , Niño , Células Madre Embrionarias , Femenino , Genitales , Humanos , Infertilidad Femenina/terapia , Masculino , Tecnología
4.
Biol Res ; 52(1): 40, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387647

RESUMEN

BACKGROUND: There are currently a number of barriers hindering the successful treatment of breast cancer, including the metastatic spread of cancer cells. In looking for new anticancer agents, we reported two novel hydrazide derivatives with anti-cancer activity in human breast cancer cells. The current study aims to explore the therapeutic potential of the most effective one, N'-((5-nitrothiophen-2-yl)methylene)-2-(phenylthio)benzohydrazide (compound B), on metastatic breast cancer, which is resistant to available chemotherapeutics. METHODS: 4T1 mammary carcinoma cells were inoculated into the fat pad mammary of 5-7-week-old female BALB/c mice and then the effective compound was intraperitoneally administered for 4 weeks. Proliferation index and angiogenesis in tumor and lung tissues were examined with immunohistochemistry. In vitro assessments were also carried out to evaluate the effect of the compound on invasion of MDA-MB-231 cells. RESULTS: Our results demonstrated that this effective derivative significantly inhibited invasion of MDA-MB-231 cells in vitro as shown by Matrigel assay and quantitative real-time method for MMP-9 expression after 48 h of treatment. Daily administration of the compound suppressed the growth of primary tumor and its metastasis to lung, which was confirmed by H&E experiment at a dose of 1 mg/kg in a well-known metastatic model of 4T1 breast cancer in syngeneic BALB/c mice. These outcomes were supported by the immunohistochemical examinations of the tumor and lung tissues of mice. Tumors and lungs in mice treated with the effective compound showed a reduced proliferation index and a smaller microvessel density compared to the control. CONCLUSION: This study highlights an anti-metastatic role for a novel hydrazide derivative in both in vitro and in vivo models of breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Metástasis de la Neoplasia/prevención & control , Animales , Línea Celular Tumoral , Femenino , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C
5.
Iran J Pharm Res ; 18(1): 125-141, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31089350

RESUMEN

Tri-block poly (lactide) poly(ethylene glycol) poly(lactide) (PLA-PEG-PLA) copolymers are among the most attractive nano-carriers for gene delivery into mammalian cells, due to their biocompatibility and biodegradability properties. However, the low efficiency of the gene delivery by these copolymers is an obstacle to gene therapy. Here, we have investigated nanoparticles formulated using the polyethylenimine (PEI) associated with PLA-PEG-PLA copolymer for efficient DNA encapsulation and delivery. PLA-PEG-PLA/DNA and PLA-PEG-PLA/PEI/DNA nanoparticles with different concentrations of PEI were prepared by the double emulsion-solvent evaporation technique. PLA-PEG-PLA/PEI/DNA were characterized for particle size, zeta potential, morphology, biocompatibility, DNA protection, DNA release, and their ability for gene delivery into MCF-7 cells. We found that enhancing the mass ratio of PEI: (PLA-PEG-PLA) (w/w%) in the PLA-PEG-PLA/PEI/DNA nanoparticles results in an increase in particles size, zeta potential, encapsulation efficiency, and DNA release. The electrophoretic analysis confirmed that the PLA-PEG-PLA and PLA-PEG-PLA/PEI could protect DNA from ultrasound damage and nuclease degradation. MTT assay showed that the PLA-PEG-PLA/PEI/DNA had low cytotoxicity than PEI complexes. The potential of PLA-PEG-PLA/PEI/DNA nanoparticles with different concentrations of PEI as a non-viral gene delivery vector for transferring pEGFP-N1 to MCF-7 cells was examined by fluorescent microscopy and flow cytometry. The flow cytometry analysis revealed that by increasing the mass ratio of PEI: (PLA-PEG-PLA) (w/w%) in PLA-PEG-PLA/PEI/DNA nanoparticles, the efficiency of the gene delivery into MCF-7 cells was improved. The results also demonstrated that PLA-PEG-PLA/PEI/DNA nanoparticles in the serum medium improved the efficiency of gene delivery more than two-fold, compared to PEI/DNA complex.

6.
Biol. Res ; 52: 40, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1019504

RESUMEN

BACKGROUND: There are currently a number of barriers hindering the successful treatment of breast cancer, including the metastatic spread of cancer cells. In looking for new anticancer agents, we reported two novel hydrazide derivatives with anti-cancer activity in human breast cancer cells. The current study aims to explore the therapeutic potential of the most effective one, N'-((5-nitrothiophen-2-yl)methylene)-2-(phenylthio)benzohydrazide (compound B), on metastatic breast cancer, which is resistant to available chemotherapeutics. METHODS: 4T1 mammary carcinoma cells were inoculated into the fat pad mammary of 5-7-week-old female BALB/c mice and then the effective compound was intraperitoneally administered for 4 weeks. Proliferation index and angiogenesis in tumor and lung tissues were examined with immunohistochemistry. In vitro assessments were also carried out to evaluate the effect of the compound on invasion of MDA-MB-231 cells. RESULTS: Our results demonstrated that this effective derivative significantly inhibited invasion of MDA-MB-231 cells in vitro as shown by Matrigel assay and quantitative real-time method for MMP-9 expression after 48 h of treatment. Daily administration of the compound suppressed the growth of primary tumor and its metastasis to lung, which was confirmed by H&E experiment at a dose of 1 mg/kg in a well-known metastatic model of 4T1 breast cancer in syngeneic BALB/c mice. These outcomes were supported by the immunohistochemical examinations of the tumor and lung tissues of mice. Tumors and lungs in mice treated with the effective compound showed a reduced proliferation index and a smaller microvessel density compared to the control. CONCLUSION: This study highlights an anti-metastatic role for a novel hydrazide derivative in both in vitro and in vivo models of breast cancer.


Asunto(s)
Animales , Femenino , Ratones , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Metástasis de la Neoplasia/prevención & control , Antineoplásicos/farmacología , Inmunohistoquímica , Línea Celular Tumoral , Ratones Endogámicos BALB C
7.
Cancer Chemother Pharmacol ; 79(6): 1195-1203, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28451832

RESUMEN

PURPOSE: The hydrazide backbone is a well-known structural core system found in a broad range of biologically activated compounds. Among which, the compounds with anticancer activity have been cited in a number of studies. With this object in mind, we focused on the in vitro and in vivo anticancer potential of two novel hydrazide derivatives bearing furan or thiophen substituents (compounds 1 and 2). METHODS: The cytotoxic property was evaluated using MTT assay against MCF-7 human breast adenocarcinoma cell line, while the in vivo antitumor activity was investigated in BALB/c mice bearing 4T1 mammary carcinoma cells. Flow cytometry was used for cell cycle analysis, and detection of apoptosis was examined by Annexin-V-FLUOS/PI assay. Protein expression of Bax, Bcl-2 and procaspase-3 was estimated by Western blotting. RESULTS: Compounds 1 and 2 were found to be cytotoxic towards breast cancer cells presenting IC50 values of 0.7 and 0.18 µM, respectively, and selectivity over normal fibroblast cells. Our findings further indicated that 2 × IC50 concentrations of both compounds induce early stage apoptosis and increase percentage of sub-G1 population in MCF-7 cells at 48 h. An elevation in Bax/Bcl-2 ratio and caspase-3 cleavage suggested that apoptosis induced by the two compounds is through a caspase- and mitochondrial-dependent pathway. In the in vivo study, compounds 1 and 2 at doses of 10 and 1 mg/Kg/day, respectively, significantly hindered the growth of tumor after 3 weeks of i.p. administration, when compared to vehicle-treated mice. CONCLUSION: Collectively, the great potential exhibited by compound 2 could make it a promising chemotherapeutic candidate for human cancers, especially for breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Hidrazinas/farmacología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/biosíntesis , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Furanos , Fase G1/efectos de los fármacos , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Tiofenos , Proteína X Asociada a bcl-2/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...