Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230924

RESUMEN

Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their ß-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the ß subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.

2.
bioRxiv ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39211161

RESUMEN

18S nonfunctional rRNA decay (NRD) detects and eliminates translationally nonfunctional 18S rRNA. While this process is critical for ribosome quality control, the mechanisms underlying nonfunctional 18S rRNA turnover remain elusive. NRD was originally identified and has exclusively been studied in Saccharomyces cerevisiae. Here, we show that 18S NRD is conserved in mammals. Using genome-wide CRISPR genetic interaction screens, we find that mammalian NRD acts through the integrated stress response (ISR) via GCN2 and ribosomal protein ubiquitination by RNF10. Selective ribosome profiling reveals nonfunctional 18S rRNA induces translational arrest at start sites. Indeed, biochemical analyses demonstrate that ISR activation limits translation initiation and attenuates collisions between scanning 43S preinitiation complexes and nonfunctional 80S ribosomes arrested at start sites. Overall, the ISR promotes nonfunctional 18S rRNA and 40S ribosomal protein turnover by RNF10-mediated ubiquitination. These findings establish a dynamic feedback mechanism by which the GCN2-RNF10 axis surveils ribosome functionality at translation initiation.

3.
J Cell Sci ; 134(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34841428

RESUMEN

Inositol hexakisphosphate kinase 1 (IP6K1) is a small molecule kinase that catalyzes the conversion of the inositol phosphate IP6 to 5-IP7. We show that IP6K1 acts independently of its catalytic activity to upregulate the formation of processing bodies (P-bodies), which are cytoplasmic ribonucleoprotein granules that store translationally repressed mRNA. IP6K1 does not localise to P-bodies, but instead binds to ribosomes, where it interacts with the mRNA decapping complex - the scaffold protein EDC4, activator proteins DCP1A/B, decapping enzyme DCP2 and RNA helicase DDX6. Along with its partner 4E-T, DDX6 is known to nucleate protein-protein interactions on the 5' mRNA cap to facilitate P-body formation. IP6K1 binds the translation initiation complex eIF4F on the mRNA cap, augmenting the interaction of DDX6 with 4E-T (also known as EIF4ENIF1) and the cap-binding protein eIF4E. Cells with reduced IP6K1 show downregulated microRNA-mediated translational suppression and increased stability of DCP2-regulated transcripts. Our findings unveil IP6K1 as a novel facilitator of proteome remodelling on the mRNA cap, tipping the balance in favour of translational repression over initiation, thus leading to P-body assembly. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
MicroARNs , Cuerpos de Procesamiento , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Humanos , Fosfotransferasas (Aceptor del Grupo Fosfato) , Proteínas , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/genética
4.
Biochem J ; 478(8): 1647-1661, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33821962

RESUMEN

The transcription factor MYC regulates cell survival and growth, and its level is tightly controlled in normal cells. We report that serine pyrophosphorylation - a posttranslational modification triggered by inositol pyrophosphate signaling molecules - controls MYC levels via regulated protein degradation. We find that endogenous MYC is stabilized and less polyubiquitinated in cells with reduced inositol pyrophosphates. We show that the inositol pyrophosphate 5-IP7 transfers its high-energy beta phosphate moiety to pre-phosphorylated serine residues in the central PEST domain of MYC. Loss of serine pyrophosphorylation in the PEST domain lowers the extent of MYC polyubiquitination and increases its stability. Fusion to the MYC PEST domain lowers the stability of GFP, but this effect is dependent on the extent of PEST domain pyrophosphorylation. The E3 ubiquitin ligase FBW7 can bind directly to the PEST domain of MYC, and this interaction is exclusively dependent on serine pyrophosphorylation. A stabilized, pyrophosphorylation-deficient form of MYC increases cell death during growth stress in untransformed cells. Splenocytes from mice lacking IP6K1, a kinase responsible for the synthesis of 5-IP7, have higher levels of MYC, and show increased cell proliferation in response to mitogens, compared with splenocytes from wild type mice. Thus, control of MYC stability through a novel pyro-phosphodegron provides unexpected insight into the regulation of cell survival in response to environmental cues.


Asunto(s)
Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/deficiencia , Proteolisis , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Ubiquitinación
5.
Adv Biol Regul ; 75: 100662, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31668836

RESUMEN

Inositol pyrophosphates (PP-IPs) are a class of energy rich metabolites present in all eukaryotic cells. The hydroxyl groups on these water soluble derivatives of inositol are substituted with diphosphate and monophosphate moieties. Since the discovery of PP-IPs in the early 1990s, enormous progress has been made in uncovering pleiotropic roles for these small molecules in cellular physiology. PP-IPs exert their effect on proteins in two ways - allosteric regulation by direct binding, or post-translational regulation by serine pyrophosphorylation, a modification unique to PP-IPs. Serine pyrophosphorylation is achieved by Mg2+-dependent, but enzyme independent transfer of a ß-phosphate from a PP-IP to a pre-phosphorylated serine residue located in an acidic motif, within an intrinsically disordered protein sequence. This distinctive post-translational modification has been shown to regulate diverse cellular processes, including rRNA synthesis, glycolysis, and vesicle transport. However, our understanding of the molecular details of this phosphotransfer from pyrophospho-inositol to generate pyrophospho-serine, is still nascent. This review discusses our current knowledge of protein pyrophosphorylation, and recent advances in understanding the mechanism of this important yet overlooked post-translational modification.


Asunto(s)
Difosfatos/metabolismo , Metabolismo Energético , Células Eucariotas/metabolismo , Fosfatos de Inositol/metabolismo , Procesamiento Proteico-Postraduccional , Serina/metabolismo , Transducción de Señal , Transporte Biológico , Fosforilación
6.
J Indian Inst Sci ; 97(1): 23-40, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32214696

RESUMEN

Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the ß-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein's activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.

7.
Mol Biochem Parasitol ; 202(2): 11-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26439304

RESUMEN

Falcipain-3 (FP3) is an essential and drug target cysteine protease of the most lethal human malaria parasite Plasmodium falciparum. FP3 and its majority of homologs in malaria parasites prefer Leu at the P2 position in substrates and inhibitors, whereas its major host homolog cathepsin L prefers Phe. However, FP3 is much less active on peptide substrates and has negligible activity against a P2 Arg-containing substrate (Z-RR-AMC) compared to its paralog falcipain-2A (FP2A). To identify the specificity determinants, the S2/3 pocket residues of FP3 were substituted with the corresponding residues in FP2 or cathepsin L, and the wild type and mutant proteases were assessed for hydrolysis of peptide and protein substrates. Our results indicate that the S2 pocket residues I94 and P181 of FP3 are chiefly responsible for its P2 Leu preference and negligible activity for Z-RR-AMC, respectively. E243 in FP3 and the corresponding residue D234 in FP2 have a key role in Z-RR-AMC hydrolysing activity, possibly through stabilization of side chain interactions, as their substitution with Ala abolished the activity. Several FP3 mutants, which retained P2 Leu preference and showed similar or more activity than wild type FP3 on peptide substrates, degraded haemoglobin less efficiently than wild type FP3, suggesting that multiple residues contribute to haemoglobinase activity. Furthermore, P181 and E243 appear to contribute to the optimum activity of FP3 in the food vacuole milieu (≈pH 5.5). The identification of residues determining specificity of FP3 could aid in developing specific inhibitors of FP3 and its homologs in malaria parasites.


Asunto(s)
Cumarinas/metabolismo , Cisteína Endopeptidasas/química , Dipéptidos/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Dominio Catalítico , Catepsina L/química , Cisteína Endopeptidasas/genética , Hemoglobinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Leucina/química , Leucina/genética , Malaria Falciparum/parasitología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Péptidos/química , Proteínas Protozoarias/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...