Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835807

RESUMEN

Cancer is one of the leading significant causes of illness and chronic disease worldwide. Skin cancer, particularly melanoma, is becoming a severe health problem due to its rising prevalence. The considerable death rate linked with melanoma requires early detection to receive immediate and successful treatment. Lesion detection and classification are more challenging due to many forms of artifacts such as hairs, noise, and irregularity of lesion shape, color, irrelevant features, and textures. In this work, we proposed a deep-learning architecture for classifying multiclass skin cancer and melanoma detection. The proposed architecture consists of four core steps: image preprocessing, feature extraction and fusion, feature selection, and classification. A novel contrast enhancement technique is proposed based on the image luminance information. After that, two pre-trained deep models, DarkNet-53 and DensNet-201, are modified in terms of a residual block at the end and trained through transfer learning. In the learning process, the Genetic algorithm is applied to select hyperparameters. The resultant features are fused using a two-step approach named serial-harmonic mean. This step increases the accuracy of the correct classification, but some irrelevant information is also observed. Therefore, an algorithm is developed to select the best features called marine predator optimization (MPA) controlled Reyni Entropy. The selected features are finally classified using machine learning classifiers for the final classification. Two datasets, ISIC2018 and ISIC2019, have been selected for the experimental process. On these datasets, the obtained maximum accuracy of 85.4% and 98.80%, respectively. To prove the effectiveness of the proposed methods, a detailed comparison is conducted with several recent techniques and shows the proposed framework outperforms.

2.
Front Oncol ; 13: 1151257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346069

RESUMEN

Skin cancer is a serious disease that affects people all over the world. Melanoma is an aggressive form of skin cancer, and early detection can significantly reduce human mortality. In the United States, approximately 97,610 new cases of melanoma will be diagnosed in 2023. However, challenges such as lesion irregularities, low-contrast lesions, intraclass color similarity, redundant features, and imbalanced datasets make improved recognition accuracy using computerized techniques extremely difficult. This work presented a new framework for skin lesion recognition using data augmentation, deep learning, and explainable artificial intelligence. In the proposed framework, data augmentation is performed at the initial step to increase the dataset size, and then two pretrained deep learning models are employed. Both models have been fine-tuned and trained using deep transfer learning. Both models (Xception and ShuffleNet) utilize the global average pooling layer for deep feature extraction. The analysis of this step shows that some important information is missing; therefore, we performed the fusion. After the fusion process, the computational time was increased; therefore, we developed an improved Butterfly Optimization Algorithm. Using this algorithm, only the best features are selected and classified using machine learning classifiers. In addition, a GradCAM-based visualization is performed to analyze the important region in the image. Two publicly available datasets-ISIC2018 and HAM10000-have been utilized and obtained improved accuracy of 99.3% and 91.5%, respectively. Comparing the proposed framework accuracy with state-of-the-art methods reveals improved and less computational time.

3.
Big Data ; 11(5): 323-338, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34995156

RESUMEN

Traffic sign detection (TSD) in real-time environment holds great importance for applications such as automated-driven vehicles. Large variety of traffic signs, different appearances, and spatial representations causes a huge intraclass variation. In this article, an extreme learning machine (ELM), convolutional neural network (CNN), and scale transformation (ST)-based model, called improved extreme learning machine network, are proposed to detect traffic signs in real-time environment. The proposed model has a custom DenseNet-based novel CNN architecture, improved version of region proposal networks called accurate anchor prediction model (A2PM), ST, and ELM module. CNN architecture makes use of handcrafted features such as scale-invariant feature transform and Gabor to improvise the edges of traffic signs. The A2PM minimizes the redundancy among extracted features to make the model efficient and ST enables the model to detect traffic signs of different sizes. ELM module enhances the efficiency by reshaping the features. The proposed model is tested on three publicly available data sets, challenging unreal and real environments for traffic sign recognition, Tsinghua-Tencent 100K, and German traffic sign detection benchmark and achieves average precisions of 93.31%, 95.22%, and 99.45%, respectively. These results prove that the proposed model is more efficient than state-of-the-art sign detection techniques.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación
4.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336292

RESUMEN

Industry 4.0 smart manufacturing systems are equipped with sensors, smart machines, and intelligent robots. The automated in-plant transportation of manufacturing parts through throwing and catching robots is an attempt to accelerate the transportation process and increase productivity by the optimized utilization of in-plant facilities. Such an approach requires intelligent tracking and prediction of the final 3D catching position of thrown objects, while observing their initial flight trajectory in real-time, by catching robot in order to grasp them accurately. Due to non-deterministic nature of such mechanically thrown objects' flight, accurate prediction of their complete trajectory is only possible if we accurately observe initial trajectory as well as intelligently predict remaining trajectory. The thrown objects in industry can be of any shape but detecting and accurately predicting interception positions of any shape object is an extremely challenging problem that needs to be solved step by step. In this research work, we only considered spherical shape objects as their3D central position can be easily determined. Our work comprised of development of a 3D simulated environment which enabled us to throw object of any mass, diameter, or surface air friction properties in a controlled internal logistics environment. It also enabled us to throw object with any initial velocity and observe its trajectory by placing a simulated pinhole camera at any place within 3D vicinity of internal logistics. We also employed multi-view geometry among simulated cameras in order to observe trajectories more accurately. Hence, it provided us an ample opportunity of precise experimentation in order to create enormous dataset of thrown object trajectories to train an encoder-decoder bidirectional LSTM deep neural network. The trained neural network has given the best results for accurately predicting trajectory of thrown objects in real time.


Asunto(s)
Robótica , Redes Neurales de la Computación
5.
Concurr Comput ; 34(20): e6434, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34512201

RESUMEN

COVID-19 is a quickly spreading over 10 million persons globally. The overall number of infected patients worldwide is estimated to be around 133,381,413 people. Infection rate is being increased on daily basis. It has also caused a devastating effect on the world economy and public health. Early stage detection of this disease is mandatory to reduce the mortality rate. Artificial intelligence performs a vital role for COVID-19 detection at an initial stage using chest radiographs. The proposed methods comprise of the two phases. Deep features (DFs) are derived from its last fully connected layers of pre-trained models like AlexNet and MobileNet in phase-I. Later these feature vectors are fused serially. Best features are selected through feature selection method of PCA and passed to the SVM and KNN for classification. In phase-II, quantum transfer learning model is utilized, in which a pre-trained ResNet-18 model is applied for DF collection and then these features are supplied as an input to the 4-qubit quantum circuit for model training with the tuned hyperparameters. The proposed technique is evaluated on two publicly available x-ray imaging datasets. The proposed methodology achieved an accuracy index of 99.0% with three classes including corona virus-positive images, normal images, and pneumonia radiographs. In comparison to other recently published work, the experimental findings show that the proposed approach outperforms it.

6.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200216

RESUMEN

Due to the rapid growth in artificial intelligence (AI) and deep learning (DL) approaches, the security and robustness of the deployed algorithms need to be guaranteed. The security susceptibility of the DL algorithms to adversarial examples has been widely acknowledged. The artificially created examples will lead to different instances negatively identified by the DL models that are humanly considered benign. Practical application in actual physical scenarios with adversarial threats shows their features. Thus, adversarial attacks and defense, including machine learning and its reliability, have drawn growing interest and, in recent years, has been a hot topic of research. We introduce a framework that provides a defensive model against the adversarial speckle-noise attack, the adversarial training, and a feature fusion strategy, which preserves the classification with correct labelling. We evaluate and analyze the adversarial attacks and defenses on the retinal fundus images for the Diabetic Retinopathy recognition problem, which is considered a state-of-the-art endeavor. Results obtained on the retinal fundus images, which are prone to adversarial attacks, are 99% accurate and prove that the proposed defensive model is robust.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Algoritmos , Inteligencia Artificial , Retinopatía Diabética/diagnóstico , Humanos , Redes Neurales de la Computación , Reproducibilidad de los Resultados
7.
PeerJ Comput Sci ; 7: e386, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33817032

RESUMEN

Provocative heart disease is related to ventricular arrhythmias (VA). Ventricular tachyarrhythmia is an irregular and fast heart rhythm that emerges from inappropriate electrical impulses in the ventricles of the heart. Different types of arrhythmias are associated with different patterns, which can be identified. An electrocardiogram (ECG) is the major analytical tool used to interpret and record ECG signals. ECG signals are nonlinear and difficult to interpret and analyze. We propose a new deep learning approach for the detection of VA. Initially, the ECG signals are transformed into images that have not been done before. Later, these images are normalized and utilized to train the AlexNet, VGG-16 and Inception-v3 deep learning models. Transfer learning is performed to train a model and extract the deep features from different output layers. After that, the features are fused by a concatenation approach, and the best features are selected using a heuristic entropy calculation approach. Finally, supervised learning classifiers are utilized for final feature classification. The results are evaluated on the MIT-BIH dataset and achieved an accuracy of 97.6% (using Cubic Support Vector Machine as a final stage classifier).

8.
Curr Med Imaging ; 17(1): 136-147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32324518

RESUMEN

BACKGROUND: Breast cancer is considered as one of the most perilous sickness among females worldwide and the ratio of new cases is increasing yearly. Many researchers have proposed efficient algorithms to diagnose breast cancer at early stages, which have increased the efficiency and performance by utilizing the learned features of gold standard histopathological images. OBJECTIVE: Most of these systems have either used traditional handcrafted or deep features, which had a lot of noise and redundancy, and ultimately decrease the performance of the system. METHODS: A hybrid approach is proposed by fusing and optimizing the properties of handcrafted and deep features to classify the breast cancer images. HOG and LBP features are serially fused with pre-trained models VGG19 and InceptionV3. PCR and ICR are used to evaluate the classification performance of the proposed method. RESULTS: The method concentrates on histopathological images to classify the breast cancer. The performance is compared with the state-of-the-art techniques, where an overall patient-level accuracy of 97.2% and image-level accuracy of 96.7% is recorded. CONCLUSION: The proposed hybrid method achieves the best performance as compared to previous methods and it can be used for the intelligent healthcare systems and early breast cancer detection.


Asunto(s)
Neoplasias de la Mama , Algoritmos , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Femenino , Humanos , Redes Neurales de la Computación , Proyectos de Investigación
9.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261136

RESUMEN

Documents are stored in a digital form across several organizations. Printing this amount of data and placing it into folders instead of storing digitally is against the practical, economical, and ecological perspective. An efficient way of retrieving data from digitally stored documents is also required. This article presents a real-time supervised learning technique for document classification based on deep convolutional neural network (DCNN), which aims to reduce the impact of adverse document image issues such as signatures, marks, logo, and handwritten notes. The proposed technique's major steps include data augmentation, feature extraction using pre-trained neural network models, feature fusion, and feature selection. We propose a novel data augmentation technique, which normalizes the imbalanced dataset using the secondary dataset RVL-CDIP. The DCNN features are extracted using the VGG19 and AlexNet networks. The extracted features are fused, and the fused feature vector is optimized by applying a Pearson correlation coefficient-based technique to select the optimized features while removing the redundant features. The proposed technique is tested on the Tobacco3482 dataset, which gives a classification accuracy of 93.1% using a cubic support vector machine classifier, proving the validity of the proposed technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...