Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617277

RESUMEN

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

2.
J Neural Eng ; 20(6)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38173230

RESUMEN

Objective.Spiking neural networks (SNNs) are powerful tools that are well suited for brain machine interfaces (BMI) due to their similarity to biological neural systems and computational efficiency. They have shown comparable accuracy to state-of-the-art methods, but current training methods require large amounts of memory, and they cannot be trained on a continuous input stream without pausing periodically to perform backpropagation. An ideal BMI should be capable training continuously without interruption to minimize disruption to the user and adapt to changing neural environments.Approach.We propose a continuous SNN weight update algorithm that can be trained to perform regression learning with no need for storing past spiking events in memory. As a result, the amount of memory needed for training is constant regardless of the input duration. We evaluate the accuracy of the network on recordings of neural data taken from the premotor cortex of a primate performing reaching tasks. Additionally, we evaluate the SNN in a simulated closed loop environment and observe its ability to adapt to sudden changes in the input neural structure.Main results.The continuous learning SNN achieves the same peak correlation (ρ=0.7) as existing SNN training methods when trained offline on real neural data while reducing the total memory usage by 92%. Additionally, it matches state-of-the-art accuracy in a closed loop environment, demonstrates adaptability when subjected to multiple types of neural input disruptions, and is capable of being trained online without any prior offline training.Significance.This work presents a neural decoding algorithm that can be trained rapidly in a closed loop setting. The algorithm increases the speed of acclimating a new user to the system and also can adapt to sudden changes in neural behavior with minimal disruption to the user.


Asunto(s)
Interfaces Cerebro-Computador , Animales , Neuronas , Redes Neurales de la Computación , Algoritmos , Educación Continua
3.
Nature ; 626(7999): 574-582, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086421

RESUMEN

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Asunto(s)
Astrocitos , Neuroprotección , Adenilil Ciclasas/metabolismo , Astrocitos/citología , Astrocitos/enzimología , Astrocitos/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Supervivencia Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microglía/patología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Glaucoma/patología , Glaucoma/terapia
4.
Cell Rep ; 42(6): 112596, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37269288

RESUMEN

Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.


Asunto(s)
Células-Madre Neurales , Retina , Retina/metabolismo , Diferenciación Celular , División Celular , Organogénesis
5.
J Phys Chem Lett ; 14(18): 4200-4210, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37115820

RESUMEN

Mobile ions in perovskite photovoltaic devices can hinder performance and cause degradation by impeding charge extraction and screening the internal field. Accurately quantifying mobile ion densities remains a challenge and is a highly debated topic. We assess the suitability of several experimental methodologies for determining mobile ion densities by using drift-diffusion simulations. We found that charge extraction by linearly increasing voltage (CELIV) underestimates ion density, but bias-assisted charge extraction (BACE) can accurately reproduce ionic lower than the electrode charge. A modified Mott-Schottky (MS) analysis at low frequencies can provide ion density values for high excess ionic densities, typical for perovskites. The most significant contribution to capacitance originates from the ionic depletion layer rather than the accumulation layer. Using low-frequency MS analysis, we also demonstrate light-induced generation of mobile ions. These methods enable accurate tracking of ionic densities during device aging and a deeper understanding of ionic losses.

6.
Invest Ophthalmol Vis Sci ; 64(3): 4, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862119

RESUMEN

Purpose: Axon transport of organelles and neurotrophic factors is necessary for maintaining cellular function and survival of retinal ganglion cells (RGCs). However, it is not clear how trafficking of mitochondria, essential for RGC growth and maturation, changes during RGC development. The purpose of this study was to understand the dynamics and regulation of mitochondrial transport during RGC maturation using acutely purified RGCs as a model system. Methods: Primary RGCs were immunopanned from rats of either sex during three stages of development. MitoTracker dye and live-cell imaging were used to quantify mitochondrial motility. Analysis of single-cell RNA sequencing was used to identify Kinesin family member 5A (Kif5a) as a relevant motor candidate for mitochondrial transport. Kif5a expression was manipulated with either short hairpin RNA (shRNA) or exogenous expression adeno-associated virus viral vectors. Results: Anterograde and retrograde mitochondrial trafficking and motility decreased through RGC development. Similarly, the expression of Kif5a, a motor protein that transports mitochondria, also decreased during development. Kif5a knockdown decreased anterograde mitochondrial transport, while Kif5a expression increased general mitochondrial motility and anterograde mitochondrial transport. Conclusions: Our results suggested that Kif5a directly regulates mitochondrial axonal transport in developing RGCs. Future work exploring the role of Kif5a in vivo in RGCs is indicated.


Asunto(s)
Mitocondrias , Células Ganglionares de la Retina , Animales , Ratas , Transporte Axonal , Cinesinas/genética , Modelos Biológicos , ARN Interferente Pequeño/genética
7.
Nature ; 618(7963): 80-86, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990110

RESUMEN

All-perovskite tandem solar cells provide high power conversion efficiency at a low cost1-4. Rapid efficiency improvement in small-area (<0.1 cm2) tandem solar cells has been primarily driven by advances in low-bandgap (approximately 1.25 eV) perovskite bottom subcells5-7. However, unsolved issues remain for wide-bandgap (> 1.75 eV) perovskite top subcells8, which at present have large voltage and fill factor losses, particularly for large-area (>1 cm2) tandem solar cells. Here we develop a self-assembled monolayer of (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid as a hole-selective layer for wide-bandgap perovskite solar cells, which facilitates subsequent growth of high-quality wide-bandgap perovskite over a large area with suppressed interfacial non-radiative recombination, enabling efficient hole extraction. By integrating (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid in devices, we demonstrate a high open-circuit voltage (VOC) of 1.31 V in a 1.77-eV perovskite solar cell, corresponding to a very low VOC deficit of 0.46 V (with respect to the bandgap). With these wide-bandgap perovskite subcells, we report 27.0% (26.4% certified stabilized) monolithic all-perovskite tandem solar cells with an aperture area of 1.044 cm2. The certified tandem cell shows an outstanding combination of a high VOC of 2.12 V and a fill factor of 82.6%. Our demonstration of the large-area tandem solar cells with high certified efficiency is a key step towards scaling up all-perovskite tandem photovoltaic technology.

8.
Ocul Immunol Inflamm ; 31(3): 515-519, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35212599

RESUMEN

PURPOSE: To describe clinico-microbiological features and outcomes of Serratia keratitis and to compare them with Pseudomonas aeruginosa keratitis. METHODS: Cases of microbiologically proven Serratia keratitis and P. aeruginosa keratitis were reviewed. Data regarding demographic and clinical characteristics, and outcomes were recorded. RESULTS: 39 patients with pure Serratia keratitis were included. Median presenting vision was 1.8 logMAR (IQR, 0.8-2.4) and median infiltrate size was 5 mm (IQR 3-7.8 mm). An ocular risk factor was present in 35 (89.7%) cases. S. marcescens was the most common species (31/39, 79.5%). Medical resolution was observed in 36/39 (92.3%) cases, while three (7.7%) eyes needed penetrating keratoplasty. On comparing with P. aeruginosa keratitis (58 eyes), no difference in outcomes (p = .14) was noted. CONCLUSION: Serratia keratitis usually occurs in eyes with a compromised surface and has good resolution with medical therapy. Both Serratia and P. aeruginosa keratitis have similar outcomes.


Asunto(s)
Infecciones Bacterianas del Ojo , Queratitis , Humanos , Pseudomonas aeruginosa , Serratia , Infecciones Bacterianas del Ojo/diagnóstico , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Infecciones Bacterianas del Ojo/complicaciones , Estudios Retrospectivos , Queratitis/diagnóstico , Queratitis/tratamiento farmacológico , Queratitis/etiología , Resultado del Tratamiento
9.
Cureus ; 14(11): e31107, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36475156

RESUMEN

Introduction Interstitial lung diseases (ILDs) primarily affect the interstitium, an alveolar wall tissue between the capillary endothelium and the alveolar epithelium. The term 'interstitial,' however, is misleading since alveolar spaces, peripheral airways, and vessels can be involved in most of these disorders.They often require a multidisciplinary diagnosis i.e., an integration of clinical, radiological, and pathological findings. A chest radiograph is relatively insensitive because of nonspecific patterns. Generally, these disorders can progress to irreversible pulmonary fibrosis and are an important cause of morbidity and mortality. It is critical to make a prompt and accurate diagnosis of the underlying causes so that patients can be managed appropriately. ILD is subdivided into idiopathic interstitial pneumonia, of which idiopathic pulmonary fibrosis (IPF) is one subset, and diffuse parenchymal lung diseases, which may be secondary to a variety of occupational or environmental exposures or others. They can complicate multiple rheumatic or connective tissue diseases (CTDs). Apart from ILD, other forms of lung damage involving the pleura, vasculature, airways, and lymphatic tissue can complicate CTDs. Aims  Aims include studying the role of high-resolution computed tomography (HRCT) in diagnosing various ILDs based on morphologic patterns, evaluating the correlation between ILD and various connective tissue disorders and the prevalence of complications in such patients, and evaluating the association of smoking with various ILDs. Methods This is a retrospective study in which HRCT thorax was performed on a 128-slice Philips CT scanner machine on 50 patients from December 2020 to February 2022 in SVP Hospital, Ahmedabad. No age or gender bias was followed. Result Out of 50 patients studied, 19 (38%) patients had the usual interstitial pneumonia (UIP) pattern and 12 (24%) had the nonspecific interstitial pneumonia (NSIP) pattern. These two were the most common among all ILD patterns. Other patterns found were hypersensitivity pneumonitis (5; 10%), respiratory bronchiolitis-related ILD (3;6%), and organizing pneumonia (2; 4%). In nine patients, the morphologic pattern was either subtle (3; 6%) or mixed (6; 12%), and the final diagnosis remained inconclusive; patients were advised clinical correlation and biopsy. Eleven (22%) patients had a history of smoking. Among smokers, the most common pattern was UIP while all patients with respiratory bronchiolitis (RB) ILD had a history of smoking. Fourteen (28%) patients showed a positive association with CTD. Among them, rheumatoid arthritis (RA) was the most common CTD and the most common pattern among RA patients was UIP. Ten (20%) of patients developed pulmonary arterial hypertension, of which two patients who had connective tissue disorder developed pulmonary arterial hypertension at a young age (24 years). The rest of the patients who developed pulmonary arterial hypertension were above 45 years of age. Among these, two were smokers. Conclusion HRCT plays an important role in the diagnosis of ILD on the basis of various morphological patterns. CTD plays a significant role in the development of ILD. UIP is the most common ILD among patients with a smoking history and RA. NSIP Is the most common in patients with CTD other than RA. Pulmonary arterial hypertension (PAH) develops early in patients with CTD. There is a significant risk of the development of PAH in patients with chronic ILD.

10.
Nat Commun ; 13(1): 7454, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460635

RESUMEN

Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.

11.
Stem Cell Reports ; 17(12): 2690-2703, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36368332

RESUMEN

Retinal ganglion cell (RGC) replacement therapy could restore vision in glaucoma and other optic neuropathies. We developed a rapid protocol for directly induced RGC (iRGC) differentiation from human stem cells, leveraging overexpression of NGN2. Neuronal morphology and neurite growth were observed within 1 week of induction; characteristic RGC-specific gene expression confirmed identity. Calcium imaging demonstrated γ-aminobutyric acid (GABA)-induced excitation characteristic of immature RGCs. Single-cell RNA sequencing showed more similarities between iRGCs and early-stage fetal human RGCs than retinal organoid-derived RGCs. Intravitreally transplanted iRGCs survived and migrated into host retinas independent of prior optic nerve trauma, but iRGCs protected host RGCs from neurodegeneration. These data demonstrate rapid iRGC generation in vitro into an immature cell with high similarity to human fetal RGCs and capacity for retinal integration after transplantation and neuroprotective function after optic nerve injury. The simplicity of this system may benefit translational studies on human RGCs.


Asunto(s)
Glaucoma , Traumatismos del Nervio Óptico , Humanos , Células Ganglionares de la Retina , Traumatismos del Nervio Óptico/metabolismo , Retina , Células Madre
12.
Sci Rep ; 12(1): 17446, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261683

RESUMEN

Adult central nervous system (CNS) axons fail to regenerate after injury, and master regulators of the regenerative program remain to be identified. We analyzed the transcriptomes of retinal ganglion cells (RGCs) at 1 and 5 days after optic nerve injury with and without a cocktail of strongly pro-regenerative factors to discover genes that regulate survival and regeneration. We used advanced bioinformatic analysis to identify the top transcriptional regulators of upstream genes and cross-referenced these with the regulators upstream of genes differentially expressed between embryonic RGCs that exhibit robust axon growth vs. postnatal RGCs where this potential has been lost. We established the transcriptional activator Elk-1 as the top regulator of RGC gene expression associated with axon outgrowth in both models. We demonstrate that Elk-1 is necessary and sufficient to promote RGC neuroprotection and regeneration in vivo, and is enhanced by manipulating specific phosphorylation sites. Finally, we co-manipulated Elk-1, PTEN, and REST, another transcription factor discovered in our analysis, and found Elk-1 to be downstream of PTEN and inhibited by REST in the survival and axon regenerative pathway in RGCs. These results uncover the basic mechanisms of regulation of survival and axon growth and reveal a novel, potent therapeutic strategy to promote neuroprotection and regeneration in the adult CNS.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Axones/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Factores de Transcripción/metabolismo
13.
Nat Commun ; 13(1): 5311, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085341

RESUMEN

Wearable strain sensors that detect joint/muscle strain changes become prevalent at human-machine interfaces for full-body motion monitoring. However, most wearable devices cannot offer customizable opportunities to match the sensor characteristics with specific deformation ranges of joints/muscles, resulting in suboptimal performance. Adequate wearable strain sensor design is highly required to achieve user-designated working windows without sacrificing high sensitivity, accompanied with real-time data processing. Herein, wearable Ti3C2Tx MXene sensor modules are fabricated with in-sensor machine learning (ML) models, either functioning via wireless streaming or edge computing, for full-body motion classifications and avatar reconstruction. Through topographic design on piezoresistive nanolayers, the wearable strain sensor modules exhibited ultrahigh sensitivities within the working windows that meet all joint deformation ranges. By integrating the wearable sensors with a ML chip, an edge sensor module is fabricated, enabling in-sensor reconstruction of high-precision avatar animations that mimic continuous full-body motions with an average avatar determination error of 3.5 cm, without additional computing devices.


Asunto(s)
Acelerometría , Aprendizaje Automático , Rango del Movimiento Articular , Dispositivos Electrónicos Vestibles , Acelerometría/instrumentación , Humanos , Movimiento (Física)
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2912-2915, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086132

RESUMEN

In dialysis patients, monitoring vascular flow of the surgically created arteriovenous fistula (AVF) is critical to indicate the success of the AVF as a dialysis access site. Current gold standard to quantify vascular flow involves external doppler evaluation which requires frequent visits to the clinic. In this paper, we present a proof-of-concept cost-efficient vascular flow monitoring system towards a wearable and robust blood flow monitoring system. The proposed system captures beat-to-beat blood flow from impedance plethysmography (IPG) signal and performs embedded computing to robustly map the changes in the IPG to peripheral blood flow. We present the proof-of-concept results for the embedded real-time blood flow computing from measurements obtained using a custom electrical bioimpedance hardware presented previously elsewhere. We anticipate the results serving as the first step towards potentially eliminating the need for using expensive and bulky systems that require specialized personnel to operate for peripheral blood flow monitoring. Clinical relevance-The study paves the way to engineering a ubiquitous blood flow monitoring system for patients who have a surgically created Arteriovenous fistula (AVF) for dialysis vascular access.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Percepción del Tiempo , Derivación Arteriovenosa Quirúrgica/métodos , Hemodinámica , Humanos , Diálisis Renal
15.
PLoS One ; 17(5): e0268883, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617346

RESUMEN

Synthetic biology has successfully advanced our ability to design and implement complex, time-varying genetic circuits to control the expression of recombinant proteins. However, these circuits typically require the production of regulatory genes whose only purpose is to coordinate expression of other genes. When designing very small genetic constructs, such as viral genomes, we may want to avoid introducing such auxiliary gene products while nevertheless encoding complex expression dynamics. To this end, here we demonstrate that varying only the placement and strengths of promoters, terminators, and RNase cleavage sites in a computational model of a bacteriophage genome is sufficient to achieve solutions to a variety of basic gene expression patterns. We discover these genetic solutions by computationally evolving genomes to reproduce desired gene expression time-course data. Our approach shows that non-trivial patterns can be evolved, including patterns where the relative ordering of genes by abundance changes over time. We find that some patterns are easier to evolve than others, and comparable expression patterns can be achieved via different genetic architectures. Our work opens up a novel avenue to genome engineering via fine-tuning the balance of gene expression and gene degradation rates.


Asunto(s)
Redes Reguladoras de Genes , Biología Sintética , Expresión Génica , Genes Reguladores , Regiones Promotoras Genéticas
16.
J Neurosci ; 42(19): 4042-4052, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35396330

RESUMEN

Retinal ganglion cells (RGCs) die after optic nerve trauma or in degenerative disease. However, acute changes in protein expression that may regulate RGC response to injury are not fully understood, and detailed methods to quantify new protein synthesis have not been tested. Here, we develop and apply a new in vivo quantitative measure of newly synthesized proteins to examine changes occurring in the retina after optic nerve injury. Azidohomoalanine, a noncanonical amino acid, was injected intravitreally into the eyes of rodents of either sex with or without optic nerve injury. Isotope variants of biotin-alkyne were used for quantitative BONCAT (QBONCAT) mass spectrometry, allowing identification of protein synthesis and transport rate changes in more than 1000 proteins at 1 or 5 d after optic nerve injury. In vitro screening showed several newly synthesized proteins regulate axon outgrowth in primary neurons in vitro This novel approach to targeted quantification of newly synthesized proteins after injury uncovers a dynamic translational response within broader proteostasis regulation and enhances our understanding of the cellular response to injury.SIGNIFICANCE STATEMENT Optic nerve injury results in death and degeneration of retinal ganglion cells and their axons. The specific cellular response to injury, including changes in new protein synthesis, is obscured by existing proteins and protein degradation. In this study, we introduce QBONCAT to isolate and quantify acute protein synthesis and subsequent transport between cellular compartments. We identify novel candidate protein effectors of the regenerative response and uncover their regulation of axon growth in vitro, validating the utility of QBONCAT for the discovery of novel regulatory and therapeutic candidates after optic nerve injury.


Asunto(s)
Traumatismos del Nervio Óptico , Axones/metabolismo , Humanos , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
17.
Front Cell Neurosci ; 16: 808598, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360489

RESUMEN

Adeno-associated virus (AAV)-mediated genetic targeting of microglia remains a challenge. Overcoming this hurdle is essential for gene editing in the central nervous system (CNS). Here, we characterized the minimal/native promoter of the HEXB gene, which is known to be specifically and stably expressed in the microglia during homeostatic and pathological conditions. Dual reporter and serial deletion assays identified the critical role of the natural 5' untranslated region (-97 bp related to the first ATG) in driving transcriptional activity of the mouse Hexb gene. The native promoter region of mouse, human, and monkey HEXB are located at -135, -134, and -170 bp to the first ATG, respectively. These promoters were highly active and specific in microglia with strong cross-species transcriptional activities, but did not exhibit activity in primary astrocytes. In addition, we identified a 135 bp promoter of CD68 gene that was highly active in microglia but not in astrocytes. Considering that HEXB is specifically expressed in microglia, these data suggest that the newly characterized microglia-specific HEXB minimal/native promoter can be an ideal candidate for microglia-targeting AAV gene therapy in the CNS.

18.
Elife ; 112022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35259089

RESUMEN

Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein 'transportome' from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.


Asunto(s)
Traumatismos del Nervio Óptico , Animales , Transporte Axonal , Axones/metabolismo , Cinesinas/genética , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa , Células Ganglionares de la Retina/metabolismo
19.
PLoS Pathog ; 18(2): e1010099, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35202449

RESUMEN

The mRNA 5' cap structure serves both to protect transcripts from degradation and promote their translation. Cap removal is thus an integral component of mRNA turnover that is carried out by cellular decapping enzymes, whose activity is tightly regulated and coupled to other stages of the mRNA decay pathway. The poxvirus vaccinia virus (VACV) encodes its own decapping enzymes, D9 and D10, that act on cellular and viral mRNA, but may be regulated differently than their cellular counterparts. Here, we evaluated the targeting potential of these viral enzymes using RNA sequencing from cells infected with wild-type and decapping mutant versions of VACV as well as in uninfected cells expressing D10. We found that D9 and D10 target an overlapping subset of viral transcripts but that D10 plays a dominant role in depleting the vast majority of human transcripts, although not in an indiscriminate manner. Unexpectedly, the splicing architecture of a gene influences how robustly its corresponding transcript is targeted by D10, as transcripts derived from intronless genes are less susceptible to enzymatic decapping by D10. As all VACV genes are intronless, preferential decapping of transcripts from intron-containing genes provides an unanticipated mechanism for the virus to disproportionately deplete host transcripts and remodel the infected cell transcriptome.


Asunto(s)
Poxviridae , Virus Vaccinia , Endorribonucleasas/metabolismo , Humanos , Poxviridae/genética , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virus Vaccinia/genética , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo
20.
Cell Rep ; 38(4): 110287, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35081342

RESUMEN

Intercellular transfer of toxic proteins between neurons is thought to contribute to neurodegenerative disease, but whether direct interneuronal protein transfer occurs in the healthy brain is not clear. To assess the prevalence and identity of transferred proteins and the cellular specificity of transfer, we biotinylated retinal ganglion cell proteins in vivo and examined biotinylated proteins transported through the rodent visual circuit using microscopy, biochemistry, and mass spectrometry. Electron microscopy demonstrated preferential transfer of biotinylated proteins from retinogeniculate inputs to excitatory lateral geniculate nucleus (LGN) neurons compared with GABAergic neurons. An unbiased mass spectrometry-based screen identified ∼200 transneuronally transported proteins (TNTPs) isolated from the visual cortex. The majority of TNTPs are present in neuronal exosomes, and virally expressed TNTPs, including tau and ß-synuclein, were detected in isolated exosomes and postsynaptic neurons. Our data demonstrate transfer of diverse endogenous proteins between neurons in the healthy intact brain and suggest that TNTP transport may be mediated by exosomes.


Asunto(s)
Comunicación Celular/fisiología , Exosomas/metabolismo , Neuronas/metabolismo , Corteza Visual/metabolismo , Animales , Técnicas de Trazados de Vías Neuroanatómicas , Proteómica , Ratas , Ratas Wistar , Vías Visuales/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA