RESUMEN
Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications. Our study investigates how Fe doping influences the structural and optical properties of Cs2AgBiCl6 DPs by understanding their STEs dynamics, which is currently lacking in the literature. A combined experimental-computational approach is employed to investigate the optoelectronic properties of pure and doped Cs2AgBiCl6 (Fe-Cs2AgBiCl6) perovskites. Successful incorporation of Fe3+ ions is confirmed by X-ray diffraction and Raman spectroscopy. Moreover, the Fe-Cs2AgBiCl6 DPs exhibit strong absorption from below 400 nm up to 700 nm, indicating sub-band gap state transitions originating from surface defects. Photoluminescence (PL) analysis demonstrates a significant enhancement in the PL intensity, attributed to an increased radiative recombination rate and higher STE density. The radiative kinetics and average lifetime are investigated by the time-resolved PL (TRPL) method; in addition, temperature-dependent PL measurements provide valuable insights into activation energy and exciton-phonon coupling strength. Our findings will not only deepen our understanding of charge carrier dynamics associated with STEs but also pave the way for the design of some promising perovskite materials for use in optoelectronics and photocatalysis.
RESUMEN
Betula utilis exhibits intriguing characteristics and interactions with its environment and has specific adaptations that enable it to thrive in various water conditions. Drought has a prominent role in influencing the growth and development of vegetation, while temperature serves as a crucial determinant of species distribution in high-altitude environments. The investigation was centered on the eco-physiological dimension of B. utilis in areas near the treeline. Across different seasons, sites, and years, the most negative pre-dawn twig water potentials (ΨPD) and mid-day twig water potentials (ΨMD) were - 0.81 and - 1.24 MPa, respectively. The highest seasonal change (ΔΨ) in twig water potential (Ψtwig) was in the post-monsoon season. Osmotic potential at full turgor (Ψπ100) declined by - 0.66 MPa and osmotic potential at zero turgor (Ψπ0) declined by - 1.07 MPa. The highest leaf conductance (gw) of 380.26 mmol m-2 s-1 was measured in the afternoon. During the initiation of flowering, ΨPD of the twig was - 0.72 MPa and gradually rose to - 0.17 MPa by the end of the flowering period. This study provides key insight into the Ψ dynamics, leaf conductance, and phenology of B. utilis, highlighting its adaptation to changing environmental conditions and the need for effective management strategies to ensure the resilience and conservation of this Critically Endangered species.
Asunto(s)
Betula , Estaciones del Año , Agua , Agua/metabolismo , Betula/crecimiento & desarrollo , Hojas de la Planta/fisiología , Ecosistema , Altitud , Temperatura , SequíasRESUMEN
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder whose cause is unclear. Neuroinflammation is recognized as one of the major pathogenic mechanisms involved in the development and progression of PD. NLRP3 inflammasome is the most widely studied inflammatory mediator in various diseases including PD. Several phytoconstituents have shown neuroprotective role in PD. Carvacrol is a phenolic monoterpene commonly found in the essential oils derived from plants belonging to Lamiaceae family. It is well known for its anti-inflammatory and antioxidant properties and has been widely explored in several diseases. In this study, we explored the role of Carvacrol in suppressing neuroinflammation by regulating NLRP3 inflammasome through Nrf2/HO-1 axis and subsequently, inflammatory cytokines like IL-1ß, IL-18 in Rotenone induced PD mice model. Three doses (25 mg/kg, 50 mg/kg, 100 mg/kg p.o.) of Carvacrol were administered to, respectively, three groups (LD, MD, HD), one hour after administration of Rotenone (1.5 mg/kg, i.p.), every day, for 21 days. Treatment with Carvacrol ameliorated the motor impairment caused by Rotenone. It alleviated neurotoxicity and reduced inflammatory cytokines. Further, Carvacrol also alleviated oxidative stress and increased antioxidant enzymes. From these results, we show that Carvacrol exerts neuroprotective effects in PD via anti-inflammatory and antioxidant mechanisms and could be a potential therapeutic option in PD.
Asunto(s)
Cimenos , Modelos Animales de Enfermedad , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Fármacos Neuroprotectores , Rotenona , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Cimenos/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Proteínas de la Membrana , Hemo-Oxigenasa 1RESUMEN
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a rare and aggressive leukemia. Philadelphia chromosome-positive cytogenetic abnormality is most common in CML. It is difficult to differentiate between de novo Ph+ T-ALL/LBL and T-cell lymphoblastic crises of CML. We present a case of adult Ph+ T-ALL/LBL with a likely history of antecedent CML. Initially thought to be a case of chronic-phase CML, a diagnostic quandary led to the pursuit of a lymph node biopsy that established the diagnosis of Ph+ T-LBL or T lymphoblastic blast crisis of CML, a clinical presentation extremely rare and only the second of its kind from our review of the literature. The patient was treated with an intensive chemotherapy regimen for over a year due to persistent minimal residual disease (MRD) positivity indicating aggressive disease.
RESUMEN
Deep sea is a vast, dark, and difficult-to-access terrain and is now looked upon as a unique niche harboring diverse microorganism. We used a metataxonomic approach to decipher the microbial diversity present in the water column (surface to near bottom), water overlaying the sediments, and the deep-sea sediments (up to 35 cm) from the Indian Contract Region (ICR) in the Central Indian Ocean Basin (CIOB). Samples were collected from #IRZ (Impact Reference Zone), #PRZ (Potential Reference Zone), and #BC20 (Control site, outside potential mining area) with an average water depth of 5,200 m. 16S rRNA (V3-V4 region) amplicon sequencing on the MiSeq platform resulted in 942,851 ASVs across 65 water and sediment samples. Higher prokaryotic diversity was observed below 200 m in the water column to the seafloor. Proteobacteria was the most dominant bacterial phylum among all the water samples while Firmicutes, Actinobacteria and, Bacteroidota dominated the sediments. Sediment (below 10 cm) was co-dominated by Firmicutes. Thermoplasmata was the dominant archaeal group in the water column while Crenarchaeota was in the sediments. BC20 was less diverse than IRZ and PRZ. Deep Sea microorganisms could play a vital role in the mineralization processes, nutrient cycling, and also different biogeochemical cycles.
RESUMEN
Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.
Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Cisplatino/farmacología , Cisplatino/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carboplatino , Butionina Sulfoximina/farmacología , Butionina Sulfoximina/uso terapéutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Resistencia a Antineoplásicos/genética , Línea Celular TumoralRESUMEN
Progressive supranuclear palsy (PSP) is a neurodegenerative condition that typically emerges in adulthood and does not exhibit any familial inheritance pattern. PSP is characterized by gradual stiffness in the central body, an inability to move the gaze upward voluntarily, postural instability, and a decline in cognitive function linked to frontal lobe dysfunction. Clinical assessment reveals a variety of findings, and cases of PSP frequently go unnoticed or are incorrectly diagnosed as other conditions. Notably, prominent neurotransmitter-related changes in PSP involve damage to the dopaminergic nigrostriatal pathway and cholinergic impairment in multiple regions. We hereby present a case of a 71-year-old female patient whose medical journey unfolds as a perplexing riddle. Despite the collective expertise of several physicians, she found herself bearing the weight of a misdiagnosis ascribed to Parkinson's Disease (PD) erroneously. She initially presented with recurring falls due to postural instability and bradykinesia, which progressed such that she became dependent on a walking aid. A comprehensive physical examination revealed indicators consistent with PSP.
RESUMEN
Neurogenic orthostatic hypotension (nOH) is a disabling problem of autonomic dysfunction in patients with Parkinson's disease, which is associated with poor quality of life and higher mortality rates. The purpose of this literature review was to explore and compare the efficacy and safety of droxidopa (an existing treatment) and ampreloxetine (a newer medication) in the treatment of nOH. We used a mixed-method literature review that addresses the epidemiology, pathophysiology, and pharmacological and non-pharmacological management of nOH in Parkinson's disease in a general way, with a more exploratory approach to droxidopa- and ampreloxetine-controlled trial studies. We included a total of 10 studies of randomized controlled trials with eight studies focused on droxidopa and two studies focused on ampreloxetine. These two drugs were analyzed and compared based on the collected individual study results. Treatment of nOH in Parkinson's disease patients with droxidopa or ampreloxetine showed clinically meaningful and statistically significant improvements relative to placebo on the components of the OHSA (Orthostatic Hypotension Symptom Assessment) composite score and OHDAS (Orthostatic Hypotension Daily Activity Scale composite scores) composite score. Droxidopa had an improved effect on daily activities, with an associated increase in standing systolic blood pressure (BP), but the long-term efficacy of droxidopa has not been documented. Standing systolic BP was maintained by ampreloxetine and worsened after the withdrawal phase. This highlights the importance of conducting further research which will help us to improve the therapeutic approach for patients with nOH and Parkinson's disease.
RESUMEN
Cu2ZnSnS4 (CZTS) thin films have attracted considerable attention as potential candidates for photovoltaic absorber materials. In a vacuum deposition technique, a sputtering stacked metallic layer followed by a thermal process for sulfur incorporation is used to obtain high-quality CZTS thin films. In this work, for fabricating CZTS thin films, we have done a 3LYS (3 layers), 6LYS, and 9LYS sequential deposition of Sn/ZnS/Cu metal stack (via. metallic stacked nanolayer precursors) onto Mo-coated corning glass substrate via. RF-sputtering. The prepared thin films were sulfurized in a tubular furnace at 550 °C in a gas mixture of 5% H2S + 95% Ar for 10 min. We further investigated the impact of the Sn/ZnS/Cu metal stacking layers on the quality of the thin film based on its response to light because metal inter-diffusion during sulfurization is unavoidable. The inter-diffusion of precursors is low in a 3-layer stack sample, limiting the fabricated film's performance. CZTS films with 6-layer and 9-layer stacks result in an improved photocurrent density of â¼38 µA cm-2 and â¼82 µA cm-2, respectively, compared to a 3-layer sample which has a photocurrent density of â¼19 µA cm-2. This enhancement can be attributed to the 9-layer approach's superior inter-diffusion of metallic precursors and compact, smooth CZTS microstructure evolution.
RESUMEN
BACKGROUND: A major cause of economic losses in the medical implant sector has been bacterial biofilms due to their ability to persist on various surfaces and their tolerance against endogenous defences, antibiotics, or other anti-microbial agents. The quest for potential sources causing inhibition or disruption of bacterial biofilms has been taken up to alleviate the loss. Plantderived extracts such as essential oils, bioactive compounds and other solvent extracts are regularly being used instead of antibiotics and other synthetic compounds as they are safer, economical, and in many instances, have an elaborate history of traditional medicinal usage. OBJECTIVES: As a plant that has been traditionally used over the centuries, the Moringa oleifera Lam., or more commonly the drumstick tree, is being tapped for myriad pharmaceutical applications. The protein-rich leaf of this tree has not only proved to be of great nutritional value but also divulged numerous potential therapeutic applications. METHODS: While reports of proteinaceous components are rare, here we report the efficacy of the aqueous extract of the leaf of M. oleifera and a 62 kDa protein component in the disruption of staphylococcal biofilms, which are largely implicated in nosocomial infections. RESULTS: The application of the M. oleifera leaf extract protein had a marked effect on the biofilm growth or formation by Staphylococcus aureus. CONCLUSION: While the crude extract itself showed considerable disruption of biofilm formation, the application of the purified protein obtained after a two-step process led to a significant increase in the anti-biofilm activity.
Asunto(s)
Antiinfecciosos , Moringa oleifera , Staphylococcus aureus , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopelículas , Hojas de la PlantaRESUMEN
Introduction: Bladder cancer is a heterogenous disease and the emerging knowledge on molecular classification of bladder tumors may impact treatment decisions based on molecular subtype. Pre-clinical models representing each subtype are needed to test novel therapies. Carcinogen-induced bladder cancer models represent heterogeneous, immune-competent, pre-clinical testing options with many features found in the human disease. Methods: Invasive bladder tumors were induced in C57BL/6 mice when continuously exposed to N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in the drinking water. Tumors were excised and serially passed by subcutaneous implantation into sex-matched syngeneic C57BL/6 hosts. Eight lines were named BBN-induced Urothelium Roswell Park (BURP) tumor lines. BURP lines were characterized by applying consensus molecular classification to RNA expression, histopathology, and immune profiles by CIBERSORT. Two lines were further characterized for cisplatin response. Results: Eight BURP tumor lines were established with 3 male and 3 female BURP tumor lines, having the basal/squamous (BaSq) molecular phenotype and morphology. BURP-16SR was established from a male mouse and has a stromal-rich (SR) molecular phenotype and a sarcomatoid carcinoma morphology. BURP-19NE was established from a male mouse and has a neuroendocrine (NE)-like molecular phenotype and poorly differentiated morphology. The established BURP tumor lines have unique immune profiles with fewer immune infiltrates compared to their originating BBN-induced tumors. The immune profiles of the BURP tumor lines capture some of the features observed in the molecular classifications of human bladder cancer. BURP-16SR growth was inhibited by cisplatin treatment, while BURP-24BaSq did not respond to cisplatin. Discussion: The BURP lines represent several molecular classifications, including basal/squamous, stroma-rich, and NE-like. The stroma-rich (BURP-16SR) and NE-like (BURP-19NE) represent unique immunocompetent models that can be used to test novel treatments in these less common bladder cancer subtypes. Six basal/squamous tumor lines were established from both male and female mice. Overall, the BURP tumor lines have less heterogeneity than the carcinogen-induced tumors and can be used to evaluate treatment response without the confounding mixed response often observed in heterogeneous tumors. Additionally, basal/squamous tumor lines were established and maintained in both male and female mice, thereby allowing these tumor lines to be used to compare differential treatment responses between sexes.
RESUMEN
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Asunto(s)
Microbioma Gastrointestinal , Probióticos , Depresión , Microbioma Gastrointestinal/fisiología , Histonas , Humanos , Quinurenina , ARN no Traducido , Triptófano/metabolismoRESUMEN
Layered bismuth triiodide (BiI3) is a 2D material that has emerged as an ideal choice for optical sensors. Although BiI3 has been prepared using vacuum-based deposition techniques, there is a dearth of research studies on synthesizing this material using chemical route. The present work uses a facile spin coating method with varying rotation speeds (rpm) to fabricate BiI3 material thin films for photodetection applications. The structural, optical, and morphological study of BiI3 thin films prepared at 3000-6000 rpm were investigated. XRD analysis indicates formation of BiI3 films and revealed that BiI3 has a rhombohedral crystal structure. FESEM analysis showed that BiI3 films prepared at different rpm are homogeneous, dense, and free from cracks, flaws, and protrusions. In addition, films show an island-like morphology with grain boundaries having different grain sizes, micro gaps, and the evolution of the granular morphology of BiI3 particles. The UV spectroscopy and photoluminescence analysis revealed that BiI3 films strongly absorb light in the visible region of spectra with a high absorption coefficient of â¼104 cm-1, have an optical band gap of â¼1.51 eV. A photodetector was realised using fabricated BiI3 film obtained at an optimum spin speed of 4000 rpm. It showed rapid rise and decay times of 0.4 s and 0.5 s, a responsivity of â¼100 µA W-1, external quantum efficiency of 2.1 × 10-4%, and detectivity of â¼3.69 × 106 Jones at a bias voltage of 0 V. Our results point towards a new direction for layered 2D BiI3 materials for the application in self-biased photodetectors.
RESUMEN
Prolactin is a polypeptide hormone that is well known for its role in reproductive physiology. Recent studies highlight its role in neurohormonal appetite regulation and metabolism. Elevated prolactin levels are widely associated with worsening metabolic disease, but it appears that low prolactin levels could also be metabolically unfavorable. This review discusses the pathophysiology of prolactin related metabolic changes, and the less commonly recognized effects of prolactin on adipose tissue, pancreas, liver, and small bowel. Furthermore, the effect of dopamine agonists on the metabolic profiles of patients with hyperprolactinemia are discussed as well.
Asunto(s)
Hiperprolactinemia , Neoplasias Hipofisarias , Prolactinoma , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Humanos , Hiperprolactinemia/complicaciones , Hiperprolactinemia/tratamiento farmacológico , Hiperprolactinemia/metabolismo , Neoplasias Hipofisarias/metabolismo , Prolactina/metabolismo , Prolactinoma/complicacionesRESUMEN
ZrBi2Se6 nanoflower-like morphology was successfully prepared using a solvothermal method, followed by a quenching process for photoelectrochemical water splitting applications. The formation of ZrBi2Se6 was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The estimated value of work function and band gap were found to be 5.5 and 2.26 eV measured using diffuse reflection spectroscopy and ultraviolet photoelectron spectroscopy, suggesting the potential candidate for water splitting. The highest current density of 9.7 µA/cm2 has been observed for the ZrBi2Se6 photoanode for the applied potential of 0.5 V vs SCE. The flat-band potential value was -0.46 V, and the 1.85 nm width of the depletion region is estimated from the Mott-Schottky (MS) analysis. It also reveals that the charge carrier density for the ZrBi2Se6 nanoflowers is 4.8 × 1015 cm-3. The negative slope of the MS plot indicates that ZrBi2Se6 is a p-type semiconductor. It was observed that ZrBi2Se6 nanoflowers had a high charge transfer resistance of â¼730 kΩ and equivalent capacitance of â¼40 nF calculated using electrochemical impedance spectroscopy (EIS) measurements. Using chronoamperometry, the estimated rise time and decay time were 50 ms and 0.25 s, respectively, which reveals the fast photocurrent response and excellent PEC performance of the ZrBi2Se6 photoanode. Furthermore, an attempt has been made to explain the PEC activity of ZrBi2Se6 nanoflowers using an energy band diagram. Thus, the initial results on ZrBi2Se6 nanoflowers appear promising for the PEC activity toward water splitting.
RESUMEN
AIMS: Investigate if kidney function markers predict posterior reversible encephalopathy syndrome (PRES) in children. MATERIALS AND METHODS: In a case-control study of high-risk children with confirmed PRES (n = 35) compared to controls (n = 14), we recorded blood urea nitrogen (BUN), serum creatinine, serum albumin, hemoglobin concentrations, estimated glomerular filtration rate, and documentation of acute kidney injury (AKI). We applied multivariable regression models and determined receiver operating characteristic curves. RESULTS: Mean age was 9.5 (SD 4.9) years, 51% were female, 29% had chronic kidney disease, 67% had nephrotoxic medication exposure, and 29% had AKI. A 1-mg/dL increase in BUN (adjusted OR 1.03, 95% CI 0.99 - 1.07) and AKI (adjusted OR 3.78, 0.68 - 21.13) were minimally, but not statistically significantly, associated with PRES. BUN = 21.6 mg/dL performed best but had low ability to predict PRES (area under the curve 0.664, 0.498 - 0.831), with 60.0% sensitivity, 71.4% specificity, and positive and negative predictive values of 84.0% and 41.7%, respectively. CONCLUSION: Kidney function may be a relatively more minor risk factor for PRES than previously believed. Further prospective studies with larger sample sizes and better kidney function assessments are warranted to evaluate the role of kidney function in the development of PRES.
Asunto(s)
Lesión Renal Aguda , Síndrome de Leucoencefalopatía Posterior , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Adolescente , Biomarcadores , Estudios de Casos y Controles , Niño , Preescolar , Creatinina , Femenino , Humanos , Riñón , Masculino , Síndrome de Leucoencefalopatía Posterior/complicaciones , Síndrome de Leucoencefalopatía Posterior/etiología , Estudios ProspectivosRESUMEN
Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.
Asunto(s)
Artritis Reumatoide , Sinoviocitos , Animales , Apoptosis , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Transducción de Señal , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismoRESUMEN
Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 µg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of antiS antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccineinduced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.
Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/virología , Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Femenino , Esquemas de Inmunización , Inmunización Pasiva , Inmunización Secundaria , Inmunoglobulina G/inmunología , Memoria Inmunológica , Pulmón/inmunología , Pulmón/virología , Macaca mulatta , Masculino , Mesocricetus , Mucosa Nasal/inmunología , Mucosa Nasal/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Potencia de la Vacuna , Replicación ViralRESUMEN
BACKGROUND: Drug promotional literatures can often be misleading and have biased information and can contribute to irrational use of medicines. Thus, it is necessary that prescribers critically analyze the drug promotional literatures presented to them. This study attempts to understand if the prescribers at Tribhuvan University Teaching Hospital are aware about the necessary information that should be present in a drug promotional literature. METHODS: A descriptive cross-sectional study was conducted over six months in which prescribers at Tribhuvan University Teaching Hospital were provided with the self-administered questionnaire and were requested to submit the filled in questionnaire. Prescribers presently working at Tribhuvan University Teaching Hospital, attending out patient department services and had received drug promotional literatures within last six months were included in this study. RESULTS: During the study, 163 of the received questionnaires met the inclusion criteria and were utilized for analysis. Advertisement, reminder items and others type of drug promotional literatures were commonly received by prescribers included in our study. Higher proportion of faculties (35.29%) preferred reprint type of drug promotional literatures. Most of the participants (47.85%) searched for 5-8 WHO-Ethical Criteria for Medicinal Drug Promotion criteria when referring a drug promotional literature. It was seen that 42.94% of prescribers realised that at least two out of four types of information related to negative attribute of the promoted medicines were missing. CONCLUSIONS: The prescribers with least duration of clinical exposure are more likely to always prescribe the medicines promoted to them. Prescribers were more confident on claims made in drug promotional literatures if they were supported using scientific evidences.
Asunto(s)
Industria Farmacéutica , Preparaciones Farmacéuticas , Estudios Transversales , Humanos , Nepal , Percepción , Centros de Atención TerciariaRESUMEN
Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3 - 100 µg of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naïve hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP. ONE-SENTENCE SUMMARY: mRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.