Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
bioRxiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253462

RESUMEN

The co-occurrence of germline and somatic oncogenic alterations is frequently observed in breast cancer, but their combined biologic and clinical significance has not been evaluated. To assess the role of germline-somatic interactions on outcomes in routine practice, we developed an integrated clinicogenomic pipeline to analyze the genomes of over 4,500 patients with breast cancer. We find that germline (g) BRCA2 -associated tumors are enriched for RB1 loss-of-function mutations and manifest poor outcomes on standard-of-care, front-line CDK4/6 inhibitor (CDK4/6i) combinations. Amongst these tumors, g BRCA2 -related homologous recombination deficiency (HRD) as well as baseline RB1 LOH status promote acquisition of RB1 loss-of- function mutations under the selective pressure of CDK4/6i, causing therapy resistance. These findings suggest an alternative therapeutic strategy using sequential targeting of HRD in g BRCA- associated breast cancers through PARP inhibitors prior to CDK4/6i therapy to intercept deleterious RB1 -loss trajectories and thus suppress the emergence of CDK4/6 inhibitor resistance. More broadly, our findings demonstrate how germline-somatic driven genomic configurations shape response to systemic therapy and can be exploited therapeutically as part of biomarker-directed clinical strategies.

2.
bioRxiv ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39229105

RESUMEN

Drug resistance is the major cause of therapeutic failure in high-grade serous ovarian cancer (HGSOC). Yet, the mechanisms by which tumors evolve to drug resistant states remains largely unknown. To address this, we aimed to exploit clone-specific genomic structural variations by combining scaled single-cell whole genome sequencing with longitudinally collected cell-free DNA (cfDNA), enabling clonal tracking before, during and after treatment. We developed a cfDNA hybrid capture, deep sequencing approach based on leveraging clone-specific structural variants as endogenous barcodes, with orders of magnitude lower error rates than single nucleotide variants in ctDNA (circulating tumor DNA) detection, demonstrated on 19 patients at baseline. We then applied this to monitor and model clonal evolution over several years in ten HGSOC patients treated with systemic therapy from diagnosis through recurrence. We found drug resistance to be polyclonal in most cases, but frequently dominated by a single high-fitness and expanding clone, reducing clonal diversity in the relapsed disease state in most patients. Drug-resistant clones frequently displayed notable genomic features, including high-level amplifications of oncogenes such as CCNE1, RAB25, NOTCH3, and ERBB2. Using a population genetics Wright-Fisher model, we found evolutionary trajectories of these features were consistent with drug-induced positive selection. In select cases, these alterations impacted selection of secondary lines of therapy with positive patient outcomes. For cases with matched single-cell RNA sequencing data, pre-existing and genomically encoded phenotypic states such as upregulation of EMT and VEGF were linked to drug resistance. Together, our findings indicate that drug resistant states in HGSOC pre-exist at diagnosis and lead to dramatic clonal expansions that alter clonal composition at the time of relapse. We suggest that combining tumor single cell sequencing with cfDNA enables clonal tracking in patients and harbors potential for evolution-informed adaptive treatment decisions.

4.
Nat Med ; 30(9): 2499-2507, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147831

RESUMEN

Cancer-associated venous thromboembolism (VTE) is a major source of oncologic cost, morbidity and mortality. Identifying high-risk patients for prophylactic anticoagulation is challenging and adds to clinician burden. Circulating tumor DNA (ctDNA) sequencing assays ('liquid biopsies') are widely implemented, but their utility for VTE prognostication is unknown. Here we analyzed three plasma sequencing cohorts: a pan-cancer discovery cohort of 4,141 patients with non-small cell lung cancer (NSCLC) or breast, pancreatic and other cancers; a prospective validation cohort consisting of 1,426 patients with the same cancer types; and an international generalizability cohort of 463 patients with advanced NSCLC. ctDNA detection was associated with VTE independent of clinical and radiographic features. A machine learning model trained on liquid biopsy data outperformed previous risk scores (discovery, validation and generalizability c-indices 0.74, 0.73 and 0.67, respectively, versus 0.57, 0.61 and 0.54 for the Khorana score). In real-world data, anticoagulation was associated with lower VTE rates if ctDNA was detected (n = 2,522, adjusted hazard ratio (HR) = 0.50, 95% confidence interval (CI): 0.30-0.81); ctDNA- patients (n = 1,619) did not benefit from anticoagulation (adjusted HR = 0.89, 95% CI: 0.40-2.0). These results provide preliminary evidence that liquid biopsies may improve VTE risk stratification in addition to clinical parameters. Interventional, randomized prospective studies are needed to confirm the clinical utility of liquid biopsies for guiding anticoagulation in patients with cancer.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Tromboembolia Venosa , Humanos , Biopsia Líquida , Tromboembolia Venosa/genética , Tromboembolia Venosa/etiología , Tromboembolia Venosa/sangre , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Femenino , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/sangre , Neoplasias/patología , Anciano , Aprendizaje Automático , Estudios Prospectivos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/patología , Pronóstico , Anticoagulantes/uso terapéutico , Adulto
5.
Clin Cancer Res ; 30(17): 3881-3893, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38949890

RESUMEN

PURPOSE: Classic Hodgkin lymphoma (cHL) is a B-cell lymphoma that occurs primarily in young adults and, less frequently, in elderly individuals. A hallmark of cHL is the exceptional scarcity (1%-5%) of the malignant Hodgkin Reed-Sternberg (HRS) cells within a network of nonmalignant immune cells. Molecular determinants governing the relationship between HRS cells and their proximal microenvironment remain largely unknown. EXPERIMENTAL DESIGN: We performed spatially resolved multiplexed protein imaging and transcriptomic sequencing to characterize HRS cell states, cellular neighborhoods, and gene expression signatures of 23.6 million cells from 36 newly diagnosed Epstein-Barr virus (EBV)-positive and EBV-negative cHL tumors. RESULTS: We show that MHC-I expression on HRS cells is associated with immune-inflamed neighborhoods containing CD8+ T cells, MHC-II+ macrophages, and immune checkpoint expression (i.e., PD1 and VISTA). We identified spatial clustering of HRS cells, consistent with the syncytial variant of cHL, and its association with T-cell-excluded neighborhoods in a subset of EBV-negative tumors. Finally, a subset of both EBV-positive and EBV-negative tumors contained regulatory T-cell-high neighborhoods harboring HRS cells with augmented proliferative capacity. CONCLUSIONS: Our study links HRS cell properties with distinct immunophenotypes and potential immune escape mechanisms in cHL.


Asunto(s)
Enfermedad de Hodgkin , Células de Reed-Sternberg , Microambiente Tumoral , Humanos , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/virología , Células de Reed-Sternberg/patología , Microambiente Tumoral/inmunología , Herpesvirus Humano 4/aislamiento & purificación , Femenino , Masculino , Perfilación de la Expresión Génica , Adulto , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/virología , Persona de Mediana Edad , Linfocitos T CD8-positivos/inmunología , Anciano , Transcriptoma
6.
Genome Biol ; 25(1): 191, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026273

RESUMEN

BACKGROUND: The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. RESULTS: We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. CONCLUSIONS: Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.


Asunto(s)
Resistencia a Antineoplásicos , Análisis de la Célula Individual , Transcriptoma , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Humanos , Animales , Resistencia a Antineoplásicos/genética , Femenino , Ratones , Variaciones en el Número de Copia de ADN , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética
7.
Nat Genet ; 56(5): 889-899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741018

RESUMEN

The extent of cell-to-cell variation in tumor mitochondrial DNA (mtDNA) copy number and genotype, and the phenotypic and evolutionary consequences of such variation, are poorly characterized. Here we use amplification-free single-cell whole-genome sequencing (Direct Library Prep (DLP+)) to simultaneously assay mtDNA copy number and nuclear DNA (nuDNA) in 72,275 single cells derived from immortalized cell lines, patient-derived xenografts and primary human tumors. Cells typically contained thousands of mtDNA copies, but variation in mtDNA copy number was extensive and strongly associated with cell size. Pervasive whole-genome doubling events in nuDNA associated with stoichiometrically balanced adaptations in mtDNA copy number, implying that mtDNA-to-nuDNA ratio, rather than mtDNA copy number itself, mediated downstream phenotypes. Finally, multimodal analysis of DLP+ and single-cell RNA sequencing identified both somatic loss-of-function and germline noncoding variants in mtDNA linked to heteroplasmy-dependent changes in mtDNA copy number and mitochondrial transcription, revealing phenotypic adaptations to disrupted nuclear/mitochondrial balance.


Asunto(s)
Núcleo Celular , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Genoma Mitocondrial , Neoplasias , Análisis de la Célula Individual , Humanos , ADN Mitocondrial/genética , Análisis de la Célula Individual/métodos , Variaciones en el Número de Copia de ADN/genética , Núcleo Celular/genética , Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Animales , Mitocondrias/genética , Secuenciación Completa del Genoma/métodos , Ratones , Heteroplasmia/genética
9.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746396

RESUMEN

Cancer-associated mutations have been documented in normal tissues, but the prevalence and nature of somatic copy number alterations and their role in tumor initiation and evolution is not well understood. Here, using single cell DNA sequencing, we describe the landscape of CNAs in >42,000 breast epithelial cells from women with normal or high risk of developing breast cancer. Accumulation of individual cells with one or two of a specific subset of CNAs (e.g. 1q gain and 16q, 22q, 7q, and 10q loss) is detectable in almost all breast tissues and, in those from BRCA1 or BRCA2 mutations carriers, occurs prior to loss of heterozygosity (LOH) of the wildtype alleles. These CNAs, which are among the most common associated with ductal carcinoma in situ (DCIS) and malignant breast tumors, are enriched almost exclusively in luminal cells not basal myoepithelial cells. Allele-specific analysis of the enriched CNAs reveals that each allele was independently altered, demonstrating convergent evolution of these CNAs in an individual breast. Tissues from BRCA1 or BRCA2 mutation carriers contain a small percentage of cells with extreme aneuploidy, featuring loss of TP53 , LOH of BRCA1 or BRCA2 , and multiple breast cancer-associated CNAs in addition to one or more of the common CNAs in 1q, 10q or 16q. Notably, cells with intermediate levels of CNAs are not detected, arguing against a stepwise gradual accumulation of CNAs. Overall, our findings demonstrate that chromosomal alterations in normal breast epithelium partially mirror those of established cancer genomes and are chromosome- and cell lineage-specific.

10.
NPJ Precis Oncol ; 8(1): 68, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480868

RESUMEN

We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.

11.
Nat Commun ; 15(1): 2482, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509111

RESUMEN

Subclonal copy number alterations are a prevalent feature in tumors with high chromosomal instability and result in heterogeneous cancer cell populations with distinct phenotypes. However, the extent to which subclonal copy number alterations contribute to clone-specific phenotypes remains poorly understood. We develop TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population. TreeAlign accurately encodes dosage effects from subclonal copy number alterations, the impact of allelic imbalance on allele-specific transcription, and obviates the need to define genotypic clones from a phylogeny a priori, leading to highly granular definitions of clones with distinct expression programs. These improvements enable clone-clone gene expression comparisons with higher resolution and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Variaciones en el Número de Copia de ADN/genética , Alelos , Neoplasias/genética , Neoplasias/patología , Genotipo , Fenotipo
12.
Cancer Res Commun ; 4(1): 92-102, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38126740

RESUMEN

Programmed death-ligand 1 (PD-L1) IHC is the most commonly used biomarker for immunotherapy response. However, quantification of PD-L1 status in pathology slides is challenging. Neither manual quantification nor a computer-based mimicking of manual readouts is perfectly reproducible, and the predictive performance of both approaches regarding immunotherapy response is limited. In this study, we developed a deep learning (DL) method to predict PD-L1 status directly from raw IHC image data, without explicit intermediary steps such as cell detection or pigment quantification. We trained the weakly supervised model on PD-L1-stained slides from the non-small cell lung cancer (NSCLC)-Memorial Sloan Kettering (MSK) cohort (N = 233) and validated it on the pan-cancer-Vall d'Hebron Institute of Oncology (VHIO) cohort (N = 108). We also investigated the performance of the model to predict response to immune checkpoint inhibitors (ICI) in terms of progression-free survival. In the pan-cancer-VHIO cohort, the performance was compared with tumor proportion score (TPS) and combined positive score (CPS). The DL model showed good performance in predicting PD-L1 expression (TPS ≥ 1%) in both NSCLC-MSK and pan-cancer-VHIO cohort (AUC 0.88 ± 0.06 and 0.80 ± 0.03, respectively). The predicted PD-L1 status showed an improved association with response to ICIs [HR: 1.5 (95% confidence interval: 1-2.3), P = 0.049] compared with TPS [HR: 1.4 (0.96-2.2), P = 0.082] and CPS [HR: 1.2 (0.79-1.9), P = 0.386]. Notably, our explainability analysis showed that the model does not just look at the amount of brown pigment in the IHC slides, but also considers morphologic factors such as lymphocyte conglomerates. Overall, end-to-end weakly supervised DL shows potential for improving patient stratification for cancer immunotherapy by analyzing PD-L1 IHC, holistically integrating morphology and PD-L1 staining intensity. SIGNIFICANCE: The weakly supervised DL model to predict PD-L1 status from raw IHC data, integrating tumor staining intensity and morphology, enables enhanced patient stratification in cancer immunotherapy compared with traditional pathologist assessment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Antígeno B7-H1/análisis , Inmunoterapia/métodos
13.
Med ; 4(11): 755-760, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37951209

RESUMEN

Frontline treatment and resultant cure rates in patients with advanced ovarian cancer have changed little over the past several decades. Here, we outline a multidisciplinary approach aimed at gaining novel therapeutic insights by focusing on the poorly understood minimal residual disease phase of ovarian cancer that leads to eventual incurable recurrences.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasia Residual , Neoplasias Ováricas/tratamiento farmacológico , Carcinoma Epitelial de Ovario/terapia
14.
Nat Commun ; 14(1): 4400, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474509

RESUMEN

Deciphering individual cell phenotypes from cell-specific transcriptional processes requires high dimensional single cell RNA sequencing. However, current dimensionality reduction methods aggregate sparse gene information across cells, without directly measuring the relationships that exist between genes. By performing dimensionality reduction with respect to gene co-expression, low-dimensional features can model these gene-specific relationships and leverage shared signal to overcome sparsity. We describe GeneVector, a scalable framework for dimensionality reduction implemented as a vector space model using mutual information between gene expression. Unlike other methods, including principal component analysis and variational autoencoders, GeneVector uses latent space arithmetic in a lower dimensional gene embedding to identify transcriptional programs and classify cell types. In this work, we show in four single cell RNA-seq datasets that GeneVector was able to capture phenotype-specific pathways, perform batch effect correction, interactively annotate cell types, and identify pathway variation with treatment over time.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de Componente Principal , Secuenciación del Exoma , Análisis de Secuencia de ARN/métodos , Análisis por Conglomerados
15.
Clin Cancer Res ; 29(18): 3633-3640, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406106

RESUMEN

PURPOSE: We report updated clinical outcomes from a phase II study of pembrolizumab, trastuzumab, and chemotherapy (PTC) in metastatic esophagogastric cancer in conjunction with outcomes from an independent Memorial Sloan Kettering (MSK) cohort. PATIENTS AND METHODS: The significance of pretreatment 89Zr-trastuzumab PET, plasma circulating tumor DNA (ctDNA) dynamics, and tumor HER2 expression and whole exome sequencing was evaluated to identify prognostic biomarkers and mechanisms of resistance in patients treated on-protocol with PTC. Additional prognostic features were evaluated using a multivariable Cox regression model of trastuzumab-treated MSK patients (n = 226). Single-cell RNA sequencing (scRNA-seq) data from MSK and Samsung were evaluated for mechanisms of therapy resistance. RESULTS: 89Zr-trastuzumab PET, scRNA-seq, and serial ctDNA with CT imaging identified how pre-treatment intrapatient genomic heterogeneity contributes to inferior progression-free survival (PFS). We demonstrated that the presence of intensely avid lesions by 89Zr-trastuzumab PET declines in tumor-matched ctDNA by 3 weeks, and clearance of tumor-matched ctDNA by 9 weeks were minimally invasive biomarkers of durable PFS. Paired pre- and on-treatment scRNA-seq identified rapid clearance of HER2-expressing tumor clones with expansion of clones expressing a transcriptional resistance program, which was associated with MT1H, MT1E, MT2A, and MSMB expression. Among trastuzumab-treated patients at MSK, ERBB2 amplification was associated with improved PFS, while alterations in MYC and CDKN2A/B were associated with inferior PFS. CONCLUSIONS: These findings highlight the clinical relevance of identifying baseline intrapatient heterogeneity and serial ctDNA monitoring of HER2-positive esophagogastric cancer patients to identify early evidence of treatment resistance, which could guide proactive therapy escalation or deescalation.


Asunto(s)
Neoplasias de la Mama , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Femenino , Receptor ErbB-2/metabolismo , Receptor de Muerte Celular Programada 1/uso terapéutico , Radioisótopos/uso terapéutico , Circonio , Biomarcadores de Tumor/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/inducido químicamente , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Trastuzumab/efectos adversos , Neoplasias de la Mama/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
16.
Blood Adv ; 7(17): 5069-5081, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37327118

RESUMEN

Although allogeneic hematopoietic cell transplant (allo-HCT) is curative for high-risk pediatric acute myeloid leukemia (AML), disease relapse remains the primary cause of posttransplant mortality. To identify pressures imposed by allo-HCT on AML cells that escape the graft-versus-leukemia effect, we evaluated immune signatures at diagnosis and posttransplant relapse in bone marrow samples from 4 pediatric patients using a multimodal single-cell proteogenomic approach. Downregulation of major histocompatibility complex class II expression was most profound in progenitor-like blasts and accompanied by correlative changes in transcriptional regulation. Dysfunction of activated natural killer cells and CD8+ T-cell subsets at relapse was evidenced by the loss of response to interferon gamma, tumor necrosis factor α signaling via NF-κB, and interleukin-2/STAT5 signaling. Clonotype analysis of posttransplant relapse samples revealed an expansion of dysfunctional T cells and enrichment of T-regulatory and T-helper cells. Using novel computational methods, our results illustrate a diverse immune-related transcriptional signature in posttransplant relapses not previously reported in pediatric AML.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Niño , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante Homólogo , Antígenos de Histocompatibilidad Clase II , Recurrencia
17.
Nature ; 619(7968): 176-183, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286593

RESUMEN

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Asunto(s)
Inestabilidad Cromosómica , Segregación Cromosómica , Cromosomas , Epigénesis Genética , Micronúcleos con Defecto Cromosómico , Neoplasias , Animales , Humanos , Ratones , Cromatina/genética , Inestabilidad Cromosómica/genética , Cromosomas/genética , Cromosomas/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias/genética , Neoplasias/patología , Mitosis , Variaciones en el Número de Copia de ADN , Procesamiento Proteico-Postraduccional
18.
bioRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37090647

RESUMEN

Dysregulated DNA replication is both a cause and a consequence of aneuploidy, yet the dynamics of DNA replication in aneuploid cell populations remains understudied. We developed a new method, PERT, for inferring cell-specific DNA replication states from single-cell whole genome sequencing, and investigated clone-specific DNA replication dynamics in >50,000 cells obtained from a collection of aneuploid and clonally heterogeneous cell lines, xenografts and primary cancer tissues. Clone replication timing (RT) profiles correlated with future copy number changes in serially passaged cell lines. Cell type was the strongest determinant of RT heterogeneity, while whole genome doubling and mutational process were associated with accumulation of late S-phase cells and weaker RT associations. Copy number changes affecting chromosome X had striking impact on RT, with loss of the inactive X allele shifting replication earlier, and loss of inactive Xq resulting in reactivation of Xp. Finally, analysis of time series xenografts illustrate how cell cycle distributions approximate clone proliferation, recapitulating expected relationships between proliferation and fitness in treatment-naive and chemotherapeutic contexts.

19.
Eur Radiol ; 33(9): 6582-6591, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37042979

RESUMEN

OBJECTIVES: While fully supervised learning can yield high-performing segmentation models, the effort required to manually segment large training sets limits practical utility. We investigate whether data mined line annotations can facilitate brain MRI tumor segmentation model development without requiring manually segmented training data. METHODS: In this retrospective study, a tumor detection model trained using clinical line annotations mined from PACS was leveraged with unsupervised segmentation to generate pseudo-masks of enhancing tumors on T1-weighted post-contrast images (9911 image slices; 3449 adult patients). Baseline segmentation models were trained and employed within a semi-supervised learning (SSL) framework to refine the pseudo-masks. Following each self-refinement cycle, a new model was trained and tested on a held-out set of 319 manually segmented image slices (93 adult patients), with the SSL cycles continuing until Dice score coefficient (DSC) peaked. DSCs were compared using bootstrap resampling. Utilizing the best-performing models, two inference methods were compared: (1) conventional full-image segmentation, and (2) a hybrid method augmenting full-image segmentation with detection plus image patch segmentation. RESULTS: Baseline segmentation models achieved DSC of 0.768 (U-Net), 0.831 (Mask R-CNN), and 0.838 (HRNet), improving with self-refinement to 0.798, 0.871, and 0.873 (each p < 0.001), respectively. Hybrid inference outperformed full image segmentation alone: DSC 0.884 (Mask R-CNN) vs. 0.873 (HRNet), p < 0.001. CONCLUSIONS: Line annotations mined from PACS can be harnessed within an automated pipeline to produce accurate brain MRI tumor segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities. KEY POINTS: • A brain MRI tumor detection model trained using clinical line measurement annotations mined from PACS was leveraged to automatically generate tumor segmentation pseudo-masks. • An iterative self-refinement process automatically improved pseudo-mask quality, with the best-performing segmentation pipeline achieving a Dice score of 0.884 on a held-out test set. • Tumor line measurement annotations generated in routine clinical radiology practice can be harnessed to develop high-performing segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.


Asunto(s)
Neoplasias Encefálicas , Procesamiento de Imagen Asistido por Computador , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
20.
bioRxiv ; 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711951

RESUMEN

Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a prevalent feature which often result in heterogeneous cancer cell populations with distinct phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific phenotypes remains poorly understood, in part due to the lack of methods to quantify how CNAs influence gene expression at a subclone level. We developed TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population and explicitly models gene dosage effects from subclonal alterations. We show through quantitative benchmarking data and application to human cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-specific transcription, and obviates the need to arbitrarily define genotypic clones from a phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of clones with distinct copy-number driven expression programs with increased resolution and accuracy over competing methods. The resulting improvement in assignment of transcriptional phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit inference of genes that are mechanistically altered through CNAs, and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...