Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38676202

RESUMEN

Haptic hands and grippers, designed to enable skillful object manipulation, are pivotal for high-precision interaction with environments. These technologies are particularly vital in fields such as minimally invasive surgery, where they enhance surgical accuracy and tactile feedback: in the development of advanced prosthetic limbs, offering users improved functionality and a more natural sense of touch, and within industrial automation and manufacturing, they contribute to more efficient, safe, and flexible production processes. This paper presents the development of a two-finger robotic hand that employs simple yet precise strategies to manipulate objects without damaging or dropping them. Our innovative approach fused force-sensitive resistor (FSR) sensors with the average current of servomotors to enhance both the speed and accuracy of grasping. Therefore, we aim to create a grasping mechanism that is more dexterous than grippers and less complex than robotic hands. To achieve this goal, we designed a two-finger robotic hand with two degrees of freedom on each finger; an FSR was integrated into each fingertip to enable object categorization and the detection of the initial contact. Subsequently, servomotor currents were monitored continuously to implement impedance control and maintain the grasp of objects in a wide range of stiffness. The proposed hand categorized objects' stiffness upon initial contact and exerted accurate force by fusing FSR and the motor currents. An experimental test was conducted using a Yale-CMU-Berkeley (YCB) object set consisted of a foam ball, an empty soda can, an apple, a glass cup, a plastic cup, and a small milk packet. The robotic hand successfully picked up these objects from a table and sat them down without inflicting any damage or dropping them midway. Our results represent a significant step forward in developing haptic robotic hands with advanced object perception and manipulation capabilities.


Asunto(s)
Dedos , Fuerza de la Mano , Robótica , Tacto , Robótica/métodos , Robótica/instrumentación , Humanos , Dedos/fisiología , Tacto/fisiología , Fuerza de la Mano/fisiología , Impedancia Eléctrica , Mano/fisiología , Diseño de Equipo
2.
J Mech Behav Biomed Mater ; 155: 106535, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613875

RESUMEN

Iliac arteries play a crucial role in peripheral blood circulation. They are susceptible to various diseases, including aneurysms and atherosclerosis. Structure, material properties, and biomechanical forces acting on different regions of the iliac vasculature may contribute to the localization and progression of these pathologies. We examined 33 arterial specimens from common iliac (CI), external iliac (EI), and internal iliac (II) arteries obtained from 11 human donors (62 ± 12 years). We conducted morphometric, mechanical, and structural analyses using planar biaxial tests, constitutive modeling, and bi-directional histology on transverse and axial sections. The iliac arteries exhibited increased tortuosity and varying disease distribution with age. CI and II arteries displayed non-uniform age-related disease progression around their circumference, while EI remained healthy even in older individuals. Trends in load-free and stress-free thickness varied along the iliac vasculature. Longitudinally, EI exhibited the highest compliance compared to other iliac vessels. In contrast, CI was stiffest longitudinally, and EI was the stiffest circumferentially. Material parameters for all iliac vessels are reported for four common constitutive relations. Elastin near the internal elastic lamina displayed greater waviness in EI and II compared to CI. Also, EI had the least glycosaminoglycans (GAGs) and the highest elastin content. Our findings highlight variations in the morphological, mechanical, and structural properties of iliac arteries along their length. This data can inform vascular disease development and computational studies, and guide the development of biomimetic repair materials and devices tailored to specific iliac locations, improving vascular repair strategies.


Asunto(s)
Arteria Ilíaca , Fenómenos Mecánicos , Humanos , Arteria Ilíaca/anatomía & histología , Persona de Mediana Edad , Masculino , Femenino , Fenómenos Biomecánicos , Anciano , Estrés Mecánico , Adulto , Anciano de 80 o más Años , Ensayo de Materiales
3.
Acta Biomater ; 177: 278-299, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307479

RESUMEN

Peripheral Artery Disease (PAD) affects the lower extremities and frequently results in poor clinical outcomes, especially in the vessels below the knee. Understanding the biomechanical and structural characteristics of these arteries is important for improving treatment efficacy, but mechanical and structural data on tibial vessels remain limited. We compared the superficial femoral (SFA) and popliteal (PA) arteries that comprise the above-knee femoropopliteal (FPA) segment to the infrapopliteal (IPA) anterior tibial (AT), posterior tibial (PT), and fibular (FA) arteries from the same 15 human subjects (average age 52, range 42-67 years, 87 % male). Vessels were imaged using µCT, evaluated with biaxial mechanical testing and constitutive modeling, and assessed for elastin, collagen, smooth muscle cells (SMCs), and glycosaminoglycans (GAGs). IPAs were more often diseased or calcified compared to the FPAs. They were also twice smaller, 53 % thinner, and significantly stiffer than the FPA longitudinally, but not circumferentially. IPAs experienced 48 % higher physiologic longitudinal stresses (62 kPa) but 27 % lower circumferential stresses (24 kPa) and similar cardiac cycle stretch of <1.02 compared to the FPA. IPAs had lower longitudinal pre-stretch (1.12) than the FPAs (1.29), but there were no differences in the stored elastic energy during pulsation. The physiologic circumferential stiffness was similar in the above and below-knee arteries (718 kPa vs 754 kPa). Structurally, IPAs had less elastin, collagen, and GAGs than the FPA, but maintained similar SMC content. Our findings contribute to a better understanding of segment-specific human lower extremity artery biomechanics and may inform the development of better medical devices for PAD treatment. STATEMENT OF SIGNIFICANCE: Peripheral Artery Disease (PAD) in the lower extremity arteries exhibits distinct characteristics and results in different clinical outcomes when treating arteries above and below the knee. However, their mechanical, structural, and physiologic differences are poorly understood. Our study compared above- and below-knee arteries from the same middle-aged human subjects and demonstrated distinct differences in size, structure, and mechanical properties, leading to variations in their physiological behavior. These insights could pave the way for creating location-specific medical devices and treatments for PAD, offering a more effective approach to its management. Our findings provide new, important perspectives for clinicians, researchers, and medical device developers interested in treating PAD in both above- and below-knee locations.


Asunto(s)
Arteria Femoral , Enfermedad Arterial Periférica , Persona de Mediana Edad , Humanos , Masculino , Adulto , Anciano , Femenino , Estrés Mecánico , Arteria Poplítea , Extremidad Inferior , Elastina , Colágeno
4.
Ann Biomed Eng ; 52(4): 794-815, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38321357

RESUMEN

The femoropopliteal artery (FPA) is the main artery in the lower limb. It supplies blood to the leg muscles and undergoes complex deformations during limb flexion. Atherosclerotic disease of the FPA (peripheral arterial disease, PAD) is a major public health burden, and despite advances in surgical and interventional therapies, the clinical outcomes of PAD repairs continue to be suboptimal, particularly in challenging calcified lesions and biomechanically active locations. A better understanding of human FPA mechanical and structural characteristics in relation to age, risk factors, and the severity of vascular disease can help develop more effective and longer-lasting treatments through computational modeling and device optimization. This review aims to summarize recent research on the main biomechanical and structural properties of human superficial femoral and popliteal arteries that comprise the FPA and describe their anatomy, composition, and mechanical behavior under different conditions.


Asunto(s)
Enfermedad Arterial Periférica , Arteria Poplítea , Humanos , Arteria Poplítea/patología , Arteria Poplítea/fisiología , Arteria Femoral/patología , Extremidad Inferior , Fémur/patología , Enfermedad Arterial Periférica/patología , Resultado del Tratamiento
5.
J Mech Behav Biomed Mater ; 150: 106332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160644

RESUMEN

Aortic diseases, such as aneurysms, atherosclerosis, and dissections, demonstrate a preferential development and progression around the aortic circumference, resulting in a highly heterogeneous disease state around the circumference. Differences in the aorta's structural composition and mechanical properties may be partly responsible for this phenomenon. Our goal in this study was to analyze the mechanical and structural properties of the human aorta at its lateral, anterior, posterior, and medial quadrants in two regions prone to circumferentially inhomogeneous diseases, descending Thoracic Aorta (TA) and Infrarenal Aorta (IFR). Human aortas were obtained from 10 donors (64 ± 11 years) and dissected from their loose surrounding tissue. Mechanical properties were determined in all four quadrants of TA and IFR using planar biaxial testing and fitted to three common constitutive models. The structure of tissues was assessed using Movat Pentachrome stained histology slides. We observed that the anterior quadrant exhibited the greatest thickness, followed by the lateral region, in both the TA and IFR. In TA, the posterior wall appeared as the stiffest location in most samples, while in IFR, the anterior wall was the stiffest. We observed a higher glycosaminoglycans content in the lateral and posterior regions of the IFR. We found elastin density to be similar in TA lateral, anterior, and posterior quadrants, while in IFR, the anterior region demonstrated the highest elastin density. Despite significant variations between subjects, this study highlights the distinct morphometrical, mechanical, and structural properties between the quadrants of both TA and IFR.


Asunto(s)
Aorta Abdominal , Aorta Torácica , Humanos , Aorta Torácica/anatomía & histología , Fenómenos Biomecánicos , Estrés Mecánico , Elastina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA