Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 349: 140913, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072202

RESUMEN

High energy demand required in membrane distillation (MD) process to heat feed water and maintain the necessary temperature gradient across the membrane presents a challenge to widespread adoption of MD. In response to this challenge, surface heating membrane distillation (SHMD) has emerged as a promising solution. SHMD can employ solar or electrical energy to directly heat the membrane and feed, eliminating the need for an external heat source to heat feed water. In this study, we explore electrothermally-driven interfacial evaporation using a multi-walled carbon nanotube (MWCNT)-based composite membrane and further envision its utilization for high-efficient SHMD. Upon application of voltage, the resistance of the MWCNT leads to the conversion of electrical energy into heat, which is then uniformly transferred to feeds. The MWCNT-based composite membrane exhibited an evaporative water flux of up to 2.34 kg m-2h-1 with an associated energy efficiency of 61% and demonstrated outstanding localized surface heating performance. The employed membranes exhibited no significant variations in either resistance or surface temperature, regardless of the direction of the applied electric field. Energy parameters from the electrothermal membranes showed quantitative agreement with values reported for various electrothermal MD systems, suggesting the potential of the composite membranes in energy-efficient and cost-effective localized heating MD applications.


Asunto(s)
Nanoestructuras , Purificación del Agua , Membranas Artificiales , Luz Solar , Agua
2.
J Biol Chem ; 299(12): 105471, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979918

RESUMEN

Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Calcio , Motivos EF Hand , Receptores de Inositol 1,4,5-Trifosfato , Animales , Ratas , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Riñón/citología , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
3.
ACS Appl Mater Interfaces ; 15(17): 20998-21007, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37096876

RESUMEN

To address the growing global need for freshwater, it has become essential to use nonpotable saline water. Solar membrane distillation is a potential desalination method that does not need conventional electricity and may cut water production costs. In this study, we develop a photothermal surface heating membrane distillation using a new class of photothermal spacers constructed with Ti3C2Tx MXene-based nanocomposites. In contrast to traditional membrane distillation, which utilizes energy-intensive bulk feed heating, solar-powered surface heating membrane distillation removes the external thermal energy input requirements, hence reducing operating costs significantly. In particular, three-dimensional (3D)-printing technology was used to fabricate the functional spacer, which allowed the design and materials to be fine-tuned per the needs of the process. Under solar illumination, the printed spacer can exhibit a localized photothermal conversion-driven heating effect near the surface of distillation membranes, which generates vapor pressure strong enough to operate distillation across membranes. Importantly, a two-dimensional Ti3C2Tx MXene with outstanding photothermal conversion efficiency and stability in hypersaline ionic solutions was incorporated into the 3D-printed spacers as the crucial nanofiller for imparting a local heating effect of feed. The fabricated nanocomposite spacers showed superior photothermal heating response under sunlight with an average permeate flux and energy conversion efficiency of 0.49 kg·m-2·h-1 and 30.6%, respectively. An enhancement in both photothermal efficiency and permeate flux was noticed as the amount of MXene nanosheets increased in the 3D-printed spacers. This study demonstrates the feasibility of using 3D-printed photothermal spacers for high-performance and sustainable surface heating membrane distillation, providing a promising avenue for further improvement with other photothermal nanofillers or spacer modifications.

4.
Bioessays ; 43(6): e2000312, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33857328

RESUMEN

Biocidal agents such as formaldehyde and glutaraldehyde are able to inactivate several coronaviruses including SARS-CoV-2. In this article, an insight into one mechanism for the inactivation of these viruses by those two agents is presented, based on analysis of previous observations during electron microscopic examination of several members of the orthocoronavirinae subfamily, including the new virus SARS-CoV-2. This inactivation is proposed to occur through Schiff base reaction-induced conformational changes in the spike glycoprotein leading to its disruption or breakage, which can prevent binding of the virus to cellular receptors. Also, a new prophylactic and therapeutic measure against SARS-CoV-2 using acetoacetate is proposed, suggesting that it could similarly break the viral spike through Schiff base reaction with lysines of the spike protein. This measure needs to be confirmed experimentally before consideration. In addition, a new line of research is proposed to help find a broad-spectrum antivirus against several members of this subfamily.


Asunto(s)
Desinfectantes/farmacología , Cuerpos Cetónicos/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antivirales/química , Antivirales/farmacología , Desinfectantes/química , Formaldehído/química , Formaldehído/farmacología , Glutaral/química , Glutaral/farmacología , Humanos , Cuerpos Cetónicos/química , Cuerpos Cetónicos/metabolismo , Cetosis/etiología , Cetosis/virología , SARS-CoV-2/patogenicidad , Virión/efectos de los fármacos , Virión/patogenicidad
5.
Case Rep Med ; 2021: 6654748, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33488735

RESUMEN

We report the case of a 56-year-old male patient, who over two decades, sequentially presented with a combination of clinical manifestations. These included thrombotic thrombocytopenic purpura (TTP), right leg deep vein thrombosis (DVT), and eventually constitutional symptoms, arthralgia, diffuse lymphadenopathy, pancytopenia, skin rash, pericarditis, and glomerulonephritis. Serologic tests and renal pathology uncovered a diagnosis of systemic lupus erythematosus (SLE), and immunosuppressive therapy was initiated. Soon after, the patient developed striking cytomegalovirus (CMV) viremia, requiring prolonged antiviral therapy and reduction of immunosuppression. Finally, an acute embolic stroke complicated the disease course. Prompt interventions allowed an excellent clinical outcome.

6.
Sci Rep ; 9(1): 9914, 2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289305

RESUMEN

The electronic transport in low-dimensional materials is controlled by quantum coherence and non-equilibrium statistics. The scope of the present investigation is to search for the origins of negative-differential resistance (NDR) behavior in N-doped ultra-narrow zigzag-edge ZnO nano-ribbons (ZnO-NRs). A state-of-the-art technique, based on a combination of density-functional theory (DFT) and non-equilibrium Green's function (NEGF) formalism, is employed to probe the electronic and transport properties. The effect of location of N dopant, with respect to the NR edges, on IV-curve and NDR is tested and three different positions for N-atom are considered: (i) at the oxygen-rich edge; (ii) at the center; and (iii) at the Zn-rich edge. The results show that both resistance and top-to-valley current ratio (TVCR) reduce when N-atom is displaced from O-rich edge to center to Zn-rich edge, respectively. After an analysis based on the calculations of transmission coefficient versus bias, band structures, and charge-density plots of HOMO/LUMO states, one is able to draw a conclusion about the origins of NDR. The unpaired electron of N dopant is causing the curdling/localization of wave-function, which in turn causes strong back-scattering and suppression of conductive channels. These effects manifest themselves in the drawback of electric current (or so called NDR). The relevance of NDR for applications in nano-electronic devices (e.g., switches, rectifiers, amplifiers, gas sensing) is further discussed.

7.
Cell Stress Chaperones ; 23(5): 797-806, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29730847

RESUMEN

The unfolded protein response (UPR) is an adaptive cellular response that aims to relieve endoplasmic reticulum (ER) stress via several mechanisms, including inhibition of protein synthesis and enhancement of protein folding and degradation. There is a controversy over the effect of the UPR on ER protein export. While some investigators suggested that ER export is inhibited during ER stress, others suggested the opposite. In this article, their conflicting studies are analyzed and compared in attempt to solve this controversy. The UPR appears indeed to enhance ER export, possibly via multiple mechanisms. However, another factor, which is the integrity of the folding machinery/environment inside ER, determines whether ER export will appear increased or decreased during experimentation. Also, different methods of stress induction appear to have different effects on ER export. Thus, improvement of ER export may represent a new mechanism by which the UPR alleviates ER stress. This may help researchers to understand how the UPR works inside cells and how to manipulate it to alter cell fate during stress, either to promote cell survival or death. This may open up new approaches for the treatment of ER stress-related diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada , Transporte de Proteínas
8.
Endocrine ; 54(2): 276-283, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27491555

RESUMEN

The aim of this article is to solve an existing controversy over the involvement of uncoupling protein-2 in the impairment of glucose-stimulated insulin secretion induced by chronic exposure of ß-cells to palmitate. We analyzed and compared the results of studies that support and that deny the involvement of uncoupling protein-2 in this impairment. We observed that this impairment could occur in multiple stages. We provide a model in which palmitate-induced impairment of glucose-stimulated insulin secretion is proposed to occur in two stages, early stage and late stage, depending on the integrity of electron supply (glycolysis and Krebs cycle) and transport system through electron transport chain after palmitate treatment. Prolonged exposure of ß-cells to palmitate can impair this system. Early-stage impairment occurs due to uncoupling by uncoupling protein-2 when this system is still intact. When this system becomes impaired, late-stage impairment occurs mainly due to reduced glucose-stimulated adenosine triphosphate production independent of uncoupling by uncoupling protein-2. The change in glucose-stimulated oxygen uptake after palmitate treatment reflects the integrity of this system and can be used to differentiate between the two stages. Some ß-cells lines and islets appear to be more resistant to palmitate-induced impairment of electron supply and transport system than others, and therefore early stage is prominent in the more resistant cell lines and less prominent or absent in the less resistant cell lines. This may help to resolve the pathogenesis of diabetes and to monitor the progression of palmitate-induced ß-cell dysfunction.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Modelos Teóricos , Ácido Palmítico/farmacología , Proteína Desacopladora 2/metabolismo , Animales , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
9.
Mar Drugs ; 13(5): 3154-81, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-26006713

RESUMEN

Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Invertebrados/química , Terpenos/química , Terpenos/farmacología , Animales , Biodiversidad , Ecosistema , Humanos , Océano Índico
10.
J Adv Res ; 6(1): 17-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25685541

RESUMEN

Natural products are structurally and biologically interesting metabolites, but they have been isolated in minute amounts. The syntheses of such natural products help in obtaining them in bulk amounts. The recognition of microbial biotransformation as important manufacturing tool has increased in chemical and pharmaceutical industries. In recent years, microbial transformation is increasing significantly from limited interest into highly active area in green chemistry including preparation of pharmaceutical products. This is the first review published on the usage of microbial biocatalysts for some natural product classes and natural product drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...