Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Chem ; 448: 139009, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522297

RESUMEN

Hybrid crude palm oil (HCPO) HIE OxG is notable for its abundance of carotenoids, tocopherols, and tocotrienols. Investigating cellular antioxidant activity (CAA) and the non-cytotoxicity of oil nanoparticles is crucial for understanding the behavior of these phytochemicals in biological systems and ensuring the safety of products. Nanoparticles of HCPO, encapsulated with jackfruit by-products were produced and characterized for CAA and cytotoxicity in Caco-2 cells. The nanoparticles exhibited nanoscale diameters (<250 nm), uniform distribution and stability (polydispersity index < 0.25; zeta potential JSF-NP -12.46 ± 0.15 mV and JAF-NP -13.73 ± 1.28 mV). JSF-NP and JAF-NP demonstrated superior CAA compared to the free HCPO across all concentrations, without inducing cytotoxic effects on differentiated Caco-2 cells. This study underscores the importance of investigating the CAA of edible oil nanoparticles, with non-cytotoxicity indicating biological safety and the potential to safeguard intestinal epithelial cells. Thus, JSF-NP and JAF-NP emerge as promising delivery systems for future HCPO applications.

2.
Eur J Pharmacol ; 967: 176393, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325792

RESUMEN

Sunitinib (SUN) is the first-line targeted therapeutic drug for advanced renal cell carcinoma (RCC). However, SUN resistance is frequently observed to result in tumor metastasis, with a poor survival rate. Therefore, finding an effective and safe adjuvant to reduce drug resistance is important for RCC treatment. Pterostilbene (PTE) and 6-shogaol (6-S) are natural phytochemicals found in edible sources and have potential applications against various cancers. However, the biological mechanisms of PTE and 6-S in SUN-resistant RCC are still unclear. Accordingly, this study investigated the regulatory effects of PTE and 6-S on cell survival, drug resistance, and cell invasion in 786-O and SUN-resistant 786-O (786-O SUNR) cells, respectively. The results demonstrated that PTE and 6-S induced apoptosis in both cell lines by upregulating the Bax/Bcl-2 ratio. Additionally, PTE and 6-S increased SUN sensitivity by inhibiting the expression of the RLIP76 transport protein, reduced cell invasion and downregulated MMP expression in both 786-O and 786-O SUNR cells. Mechanistically, PTE, and 6-S significantly and dose-dependently suppressed the RLIP76-initiated Ras/ERK and Akt/mTOR pathways. In summary, PTE and 6-S induce apoptosis, enhance SUN sensitivity, and inhibit migration in both 786-O and 786-O SUNR cells. These novel findings demonstrate the potential of PTE and 6-S as target therapeutic adjuvants for RCC treatment.


Asunto(s)
Carcinoma de Células Renales , Catecoles , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Sunitinib/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Neoplasias Renales/patología , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral
3.
Food Chem ; 444: 138583, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38309082

RESUMEN

Antarctic krill oil (AKO) is reddish-orange in color but undergoes changes during storage. To investigate the color deterioration and potential mechanisms involved, the changes in color, endogenous components (astaxanthin, fatty acids, and phospholipids), and reaction products (aldehydes, α-dicarbonyl compounds, and pyrroles) of AKO upon storage were determined. Although the visual color of AKO tended to darken upon storage, the colorimetric analysis and ultraviolet-visible spectrum analysis both indicated a fading in red and yellow due to the oxidative degradation of astaxanthin. During storage of AKO, lipid oxidation led to the formation of carbonyl compounds such as aldehydes and α-dicarbonyls. In addition, phosphatidylethanolamines (PEs) exhibited a faster loss rate than phosphatidylcholines. Moreover, hydrophobic pyrroles, the Maillard-like reaction products associated with primary amine groups in PEs accumulated. Therefore, it is suggested that the Maillard-like reaction between PEs and carbonyl compounds formed by lipid oxidation contributed to color darkening of AKO during storage.


Asunto(s)
Euphausiacea , Animales , Euphausiacea/química , Aceites/química , Aldehídos , Pirroles , Xantófilas
4.
Foods ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38397500

RESUMEN

Interspecific hybrid crude palm oil (HCPO) HIE OxG derived from crossbred African oil palm (Elaeis guineensis) and American Caiaué (Elaeis oleifera) is prominent for its fatty acid and antioxidant compositions (carotenoids, tocopherols, and tocotrienols), lower production cost, and high pest resistance properties compared to crude palm oil. Biodegradable and sustainable encapsulants derived from vegetable byproducts were used to formulate HCPO nanoparticles. Nanoparticles with hybrid crude palm oil and jackfruit seed flour as a wall material (N-JSF) and with hybrid crude palm oil and jackfruit axis flour as a wall material (N-JAF) were optimized using a 22 experimental design. They exhibited nanoscale diameters (<250 nm) and were characterized based on their zeta potential, apparent viscosity, pH, color, and total carotenoid content. The nanoparticles demonstrated a monodisperse distribution, good uniformity, and stability (polydispersity index < 0.25; zeta potentials: N-JSF -19.50 ± 1.47 mV and N-JAF -12.50 ± 0.17 mV), as well as high encapsulation efficiency (%) (N-JSF 86.44 ± 0.01 and N-JAF 90.43 ± 1.34) and an optimal carotenoid retention (>85%). These nanoparticles show potential for use as sustainable and clean-label HCPO alternatives in the food industry.

5.
J Sci Food Agric ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358042

RESUMEN

BACKGROUND: Sea buckthorn (Hippophae rhamnoides L.) was introduced into Canada in the early 2000s. This plant bears fruits with high commercial value in other countries due to its premium oil. Nevertheless, sea buckthorn berries are also a rich source of bioactives with nutraceutical potential, especially the variety grown in Newfoundland (Canada), which has not previously been characterized. As such, this study evaluated the composition of polyphenols in sea buckthorn pomace and seeds, as well as their prospective health-promoting effects. RESULTS: Polyphenolic identification by high-performance liquid chromatography-ultraviolet-mass spectrometry-time of flight revealed the presence of 24 compounds in the seeds and 16 compounds in the pomace, including phenolic acids, flavonoids, and tannins, with ellagic acid derivative IV (pomace, 52.13 µg g-1 ) and (+)-catechin (seeds, 690.8 µg g-1 ) being the most dominant. Sea buckthorn extracts displayed in vitro antidiabetic and anti-obesity potential by inhibiting α-glucosidase (71.52-99.31%) and pancreatic lipase (15.80-35.61%) enzymes, respectively. The extracts also protected low-density-lipoprotein cholesterol (50.97-89.67%) and supercoiled DNA (35.11-79.84%) from oxidative damage. CONCLUSION: Sea buckthorn berries grown in Canada showed promising health benefits induced by their rich and diverse polyphenolic profile and need to be considered for further commercial expansion as a bioactive-loaded superfruit. © 2024 Society of Chemical Industry.

6.
J Agric Food Chem ; 72(8): 4035-4048, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349961

RESUMEN

Jerivá and butiá are under-valued tropical fruits lacking scientific evidence about their nutraceutical potential. Therefore, they were investigated for their phenolic compound composition and biological activities. Free, esterified, and insoluble-bound polyphenols were obtained from powdered jerivá and butiá pomace and seeds. The total phenolic estimation in seeds (jerivá, 36.45 mg GAE/g; butiá, 45.79 mg GAE/g) exceeded pomaces (jerivá, 23.77 mg GAE/g; butiá, 18.69 mg GAE/g). Phenolic extracts demonstrated antidiabetic and antiobesity potential, inhibiting α-glucosidase (30.51-98.43%) and pancreatic lipase (19.66-41.98%). They also suppressed free radical-induced damage to DNA (21.46-92.48%) and LDL-cholesterol (8.27-23.20%). Identified phenolics (51) included multiple phenolic acids, flavonoids, and tannins, predominantly gallic acid derivatives/conjugates. This is the first study to provide a detailed description of the phenolic profile of these fruits and their byproducts coupled with their bioactivities. Butiá and jerivá were demonstrated to be outstanding sources of polyphenols with high nutraceutical potential for bioeconomic exploration.


Asunto(s)
Antioxidantes , Frutas , Antioxidantes/farmacología , Frutas/química , Fenoles/análisis , Flavonoides , Extractos Vegetales/farmacología , Suplementos Dietéticos
7.
Int J Biol Macromol ; 253(Pt 7): 127329, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37844809

RESUMEN

Sea cucumbers contain a wide range of biomolecules, including sulfated polysaccharides (SPs), with immense therapeutic and nutraceutical potential. SPs in sea cucumbers are mainly fucosylated chondroitin sulfate (FCS) and fucan sulfate (FS) which exhibit a series of pharmacological effects, including anticoagulant activity, in several biological systems. FCS is a structurally distinct glycosaminoglycan in the sea cucumber body wall, and its biological properties mainly depend on the degree of sulfation, position of sulfate group, molecular weight, and distribution of branches along the backbone. So far, FCS and FS have been recognized for their antithrombotic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, anti-obesity, and antioxidant potential. However, the functions of these SPs are mainly dependent on the species, origins, harvesting season, and extraction methods applied. This review focuses on the SPs of sea cucumbers and how their structural diversities affect various biological activities. In addition, the mechanism of actions of SPs, chemical structures, factors affecting their bioactivities, and their extraction methods are also discussed.


Asunto(s)
Pepinos de Mar , Animales , Pepinos de Mar/química , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Anticoagulantes/química , Sulfatos/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Sulfatos de Condroitina/química , Peso Molecular
8.
Plants (Basel) ; 12(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37896038

RESUMEN

Flixweed (sophia) seed meal and camelina, both by-products of oil processing, were employed to generate protein hydrolysates by applying Flavourzyme and Alcalase. This study aimed to integrate in vitro and in silico methods to analyze sophia and camelina protein hydrolysates for releasing potent antioxidative, dipeptidyl peptidase IV (DPP IV) inhibitors and angiotensin-converting enzyme (ACE) inhibitory peptides. In vitro methods were used to investigate the antioxidant potential of sophia/camelina protein hydrolysates. Bioinformatics techniques, including Peptideranker, BIOPEP, Toxinpred, AlgPred, and SwissADME, were employed to obtain the identification of bioactive peptides produced during the hydrolysis process. Protein hydrolysates produced from sophia and camelina seed meal exhibited higher ABTS and DPPH radical scavenging activities Ithan their protein isolates. Among the produced protein hydrolysates, Alcalase-treated samples showed the highest oxygen radical absorbance capacity and hydroxyl radical scavenging activity. In addition, sophia/camelina hydrolysates prevented hydroxyl and peroxyl radical-induced DNA scission and LDL cholesterol oxidation. In silico proteolysis was conducted on Alcalase-treated samples, and resultant peptides showed potential DPP IV and ACE-inhibitory activities. Identified peptides were further assessed for their toxicity and medicinal properties. Results indicate that all digestive-resistant peptides were non-toxic and had desirable drug-like properties. The findings of this study suggest that sophia/camelina protein hydrolysates are promising candidates for functional foods, nutraceuticals, and natural therapeutics.

9.
J Agric Food Chem ; 71(43): 16067-16078, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861789

RESUMEN

Green pea hull is a processing byproduct of green pea and rich in polyphenols. Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by accumulation of lipids in the liver for which there are no effective treatment strategies. Here, a mouse model of NAFLD induced by a DSS+high-fat diet (HFD) was established to investigate the effect of green pea hull polyphenol extract (EGPH). The results show that EGPH relief of NAFLD was a combined effect, including reducing hepatic fat accumulation, improving antioxidant activity and blood lipid metabolism, and maintaining glucose homeostasis. Increased intestinal permeability aggravated NAFLD. Combined metabolomics and transcriptomic analysis showed that vitamin B6 is the key target substance for EGPH to alleviate NAFLD, and it may be the intestinal flora metabolite. After EGPH intervention, the level of vitamin B6 in mice was significantly increased, and more than 60% in the blood enters the liver, which activated or inhibited PPAR and TLR4/NF-κB signaling pathways to relieve NAFLD. Our research could be a win-win for expanding the use of green pea hull and the search for NAFLD prophylactic drugs.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Receptor Toll-Like 4/metabolismo , Receptores Activados del Proliferador del Peroxisoma , Polifenoles/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Vitamina B 6/metabolismo , Vitamina B 6/farmacología , Vitamina B 6/uso terapéutico , Dieta Alta en Grasa , Ratones Endogámicos C57BL
10.
Molecules ; 28(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446924

RESUMEN

Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.


Asunto(s)
Cucumaria , Pepinos de Mar , Animales , Antioxidantes/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Pepinos de Mar/metabolismo , Hidrolisados de Proteína/farmacología , LDL-Colesterol , Peptidil-Dipeptidasa A/metabolismo
11.
Crit Rev Food Sci Nutr ; : 1-40, 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36908213

RESUMEN

Molecular modifications have been practiced for more than a century and nowadays they are widely applied in food, pharmaceutical, or other industries to manipulate the physicochemical, bioactivity, metabolic/catabolic, and pharmacokinetic properties. Among various structural modifications, the esterification/O-acylation has been well-established in altering lipophilicity and bioactivity of parent bioactive compounds, especially natural polyphenolics, while maintaining their high biocompatibility. Meanwhile, various classic chemical and enzymatic protocols and other recently emerged cell factory technology are being employed as viable esterification strategies. In this contribution, the main motivations of phenolic esterification, including the tendency to replace synthetic alkyl phenolics with safer alternatives in the food industry to improve the bioavailability of phenolics as dietary supplements/pharmaceuticals, are discussed. In addition, the toxicity, metabolism, and commercial application of synthetic and natural phenolics are briefly introduced. Under these contexts, the mechanisms and reaction features of several most prevalent chemical and enzymatic esterification pathways are demonstrated. In addition, insights into the studies of esterification modification of natural phenolic compounds and specific pros/cons of various reaction systems with regard to their practical application are provided.

12.
Plants (Basel) ; 12(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36840285

RESUMEN

Persimmon is a delicious fruit, and its leaves are considered a valuable ingredient in food, beverage, pharmaceutical, and cosmetic sectors. Traditionally, persimmon leaves (PL) are used as a functional tea in Asian culture to cure different ailments, and are also incorporated into various food and cosmeceutical products as a functional ingredient. PL mainly contain flavonoids, terpenoids, and polysaccharides, along with other constituents such as carotenoids, organic acids, chlorophylls, vitamin C, and minerals. The major phenolic compounds in PL are proanthocyanidins, quercetin, isoquercetin, catechin, flavonol glucosides, and kaempferol. Meanwhile, ursolic acid, rotungenic acid, barbinervic acid, and uvaol are the principal terpenoids. These compounds demonstrate a wide range of pharmacological activities, including antioxidant, anticancer, antihypertensive, antidiabetic, anti-obesity, anti-tyrosinase, antiallergic, and antiglaucoma properties. This review summarizes the latest information on PL, mainly distribution, traditional uses, industrial potential, and bioactive compounds, as well as their potential action mechanisms in exhibiting biological activities. In addition, the effect of seasonality and geographical locations on the content and function of these biomolecules are discussed.

13.
Food Res Int ; 164: 112344, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737936

RESUMEN

Hypertrophy of adipose tissues and dysbiosis are hallmarks of obesity. Although drugs are applied for obesity treatment, side effects limit their use. The anti-obesity capacity of rosmarinic acid (RA) has been documented. Trichodesma khasianum Clarke is an edible RA-rich plant grown in Taiwan. Our previous study found that an 80 % ethanol extract of T. khasianum Clarke leaves (80EETC) ameliorates gastric mucosal damage through its anti-inflammatory, antioxidant, and microbiota modulation abilities. However, the anti-obesity effect of 80EETC remains unclear. Therefore, the objective of this study was to explore the protective effects of low-dose 80EETC (125 mg/kg b.w., 80EETCL) or high-dose 80EETC (250 mg/kg b.w., 80EETCH) on obesity development through gut microbiota modulation in high-fat diet (HFD)-induced C57BL/6 mice. The results showed a high RA content (89.2 ± 7.4 mg/g) in 80EETC. 80EETC administration significantly decreased body weight, body fat ratio, serum lipid levels (TC, TG, and LDL-C), adipose tissue accumulation, malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) in HFD-fed mice. Furthermore, supplementation with 80EETC reduced the Firmicutes/Bacteroidetes ratio and enhanced the relative abundance of gut microbiota (p_Bacteroidetes, f_Lactobacillus, f_Muribaculaceae, f_Prevotellaceae, g_Lactobacillus, g_Prevotellaceae_NK3B31_group, g_Ruminococcaceae_UCG-013, and g_Ruminococcaceae_UCG-014), which negatively correlated with obesity-related factors such as body weight, energy intake, fat accumulation in adipose tissue, TC, TG, LDL, and MDA. In conclusion, RA-rich 80EETC had a protective effect against obesity development and it has potential in healthy food applications.


Asunto(s)
Dieta Alta en Grasa , Microbiota , Ratones , Animales , Ratones Obesos , Dieta Alta en Grasa/efectos adversos , Disbiosis/tratamiento farmacológico , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Peso Corporal , Bacteroidetes , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ácido Rosmarínico
14.
Antioxidants (Basel) ; 12(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36671065

RESUMEN

Insoluble-bound phenolics (IBPs) are extensively found in the cell wall and distributed in various tissues/organs of plants, mainly cereals, legumes, and pulses. In particular, IBPs are mainly distributed in the protective tissues, such as seed coat, pericarp, and hull, and are also available in nutritional tissues, including germ, epicotyl, hypocotyl radicle, and endosperm, among others. IBPs account for 20-60% of the total phenolics in food matrices and can exceed 70% in leaves, flowers, peels, pulps, seeds, and other counterparts of fruits and vegetables, and up to 99% in cereal brans. These phenolics are mostly covalently bound to various macromolecules such as hemicellulose, cellulose, structural protein, arabinoxylan, and pectin, which can be extracted by acid, alkali, or enzymatic hydrolysis along with various thermal and non-thermal treatments. IBPs obtained from various sources exhibited a wide range of biological activities, including antioxidant, anti-inflammatory, antihypertensive, anticancer, anti-obesity, and anti-diabetic properties. In this contribution, the chemistry, distribution, biological activities, metabolism, and extraction methods of IBPs, and how they are affected by various treatments, are summarized. In particular, the effect of thermal and non-thermal processing on the release of IBPs and their antioxidant potential is discussed.

15.
Food Res Int ; 163: 112262, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596173

RESUMEN

Sea cucumber tentacles (aquapharyngeal bulb) are a rich source of biologically active compounds, including phenolics, however they are mainly discarded as processing waste. This study evaluated free, esterified, and insoluble-bound phenolics of Atlantic sea cucumber (Cucumaria frondosa) tentacles and their antioxidant activity for the first time. Biological properties such as inhibitory activities against α-glucosidase, tyrosinase, and the formation of AGEs as well as LDL-cholesterol and DNA oxidation were investigated. The antioxidant activity of the phenolic extracts was also evaluated in a fish model system. In the UHPLC-QTOF-MS/MS analysis, 31 phenolic compounds, mainly phenolic acids and flavonoids, were identified and quantified. Among them, eight compounds were detected for the first time in any species of sea cucumber. The free phenolic fraction was the major form of phenolics, mainly protocatechuic acid, p-coumaric acid, gallic acid, ellagic acid, catechin, and quercetin, exhibiting strong antioxidant and biological activities. Fresh Atlantic salmon treated with sea cucumber phenolics delayed lipid oxidation as measured by the thiobarbituric acid reactive substances (TBARS) assay. Therefore, Atlantic sea cucumber tentacles may serve as a viable source of functional food ingredients with protective antioxidant properties.


Asunto(s)
Cucumaria , Pepinos de Mar , Animales , Antioxidantes/farmacología , Antioxidantes/análisis , Espectrometría de Masas en Tándem , Fenoles/análisis
16.
Food Chem ; 408: 134815, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549155

RESUMEN

The oxidative decomposition/degradation of two main tea flavanols, EGCG/GCG and ECG/CG, was studied in alkaline solution under ultrasonic-assisted thermal conditions. The study employed HPLC-ESI-ToF-MS to identify the products generated by atmospheric oxygen oxidation and various base-catalyzed reactions. Strong basic condition led to accelerated hydrolysis and oxidation of EGCG/GCG and ECG/CG and yielded gallic acid, de-galloyl flavanols and corresponding o-quinone derivatives. Meanwhile, peroxidation or base-catalyzed cleavage and rearrangement occurred extensively on C- and B-rings of flavanol and generated various simpler aldehydes or acids. Besides, a number of dimers/trimers were produced. This contribution provides empirical proof of oxidative degradation of flavanols under strong alkaline condition. Meanwhile, detailed reaction mechanisms of C-/B-ring degradation and dimerization/polymerization phenomena are proposed to help understand the structural changes of flavanols under strong alkaline conditions.


Asunto(s)
Catequina , , Té/química , Oxidación-Reducción , Catequina/química , Polifenoles , Electrocardiografía
17.
Plants (Basel) ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36501323

RESUMEN

Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.

18.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36419380

RESUMEN

Food products contain bioactive compounds such as phenolic and polyphenolic compounds and vitamins, resulting in a myriad of biological characteristics such as antimicrobial, anticarcinogenic, and antioxidant activities. However, their application is often restricted because of their relatively low solubility and stability in emulsions and oil-based products. Therefore, chemical, enzymatic, or chemoenzymatic lipophilization of these compounds can be achieved by grafting a non-polar moiety onto their polar structures. Among different methods, enzymatic modification is considered environmentally friendly and may require only minor downstream processing and purification steps. In recent years, different systems have been suggested to design the synthetic reaction of these novel products. This review presents the new trends in this area by summarizing the essential enzymatic modifications in the last decade that led to the synthesis of bioactive compounds with attractive antioxidative properties for the food industry by emphasizing on optimization of the reaction conditions to maximize the production yields. Lastly, recent developments regarding characterization, potential applications, emerging research areas, and needs are highlighted.

19.
Mar Drugs ; 20(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36286434

RESUMEN

Bioinformatic tools are widely used in predicting potent bioactive peptides from food derived materials. This study was focused on utilizing sea cucumber processing by-products for generating antioxidant and ACE inhibitory peptides by application of a range of in silico techniques. Identified peptides using LC-MS/MS were virtually screened by PepRank technique followed by in silico proteolysis simulation with representative digestive enzymes using BIOPEP-UWMTM data base tool. The resultant peptides after simulated digestion were evaluated for their toxicity using ToxinPred software. All digestive resistance peptides were found to be non-toxic and displayed favorable functional properties indicating their potential for use in a wide range of food applications, including hydrophobic and hydrophilic systems. Identified peptides were further assessed for their medicinal characteristics by employing SwissADME web-based application. Our findings provide an insight on potential use of undervalued sea cucumber processing discards for functional food product development and natural pharmaceutical ingredients attributed to the oral drug discovery process.


Asunto(s)
Biología Computacional , Pepinos de Mar , Animales , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Cromatografía Liquida , Antioxidantes/farmacología , Espectrometría de Masas en Tándem , Péptidos/farmacología , Péptidos/química , Preparaciones Farmacéuticas
20.
J Agric Food Chem ; 70(43): 14073-14083, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36259733

RESUMEN

Quercetin monoesters were prepared via a one-step enzymatic transesterification. The main acylation products were eight quercetin ester derivatives, respectively, consisting of varying acyl groups ranging from 2 to 18 carbon atoms (acetate, butyrate, caproate, caprylate, caprate, laurate, myristate, and stearate). The purified quercetin esters were structurally characterized by LC-ESI-ToF and NMR HSQC. Meanwhile, several classical chemical (DPPH, ABTS, FRAP, and Fe2+ chelation assays), food (ß-carotene bleaching assay), and biological (LDL and DNA oxidation assays) models were constructed to evaluate and systematically compare their antioxidant efficacy. O-Acylation increased the lipophilicity of quercetin derivatives, and lipophilicity increased with the increasing chain length of the acyl group. The dual effect of the acyl chain length on biasing quercetin monoesters' antioxidant efficacies has been summarized and verified. Overall, the results imply that the acylated quercetin have great potential as functional/health-beneficial ingredients for use in lipid-based matrices of cosmetics, supplements, and nutraceuticals.


Asunto(s)
Antioxidantes , Quercetina , Quercetina/química , Antioxidantes/química , Ácidos Grasos/química , Ésteres/química , Esterificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA