Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biomed Opt ; 29(9): 095003, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309245

RESUMEN

Significance: Optical properties of biological tissues, such as refractive index (RI), are fundamental properties, intrinsically linked to the tissue's composition and structure. We hypothesize that, as the RI and the functional properties of articular cartilage (AC) are dependent on the tissue's structure and composition, the RI of AC is related to its biomechanical properties. Aim: This study aims to investigate the relationship between RI of human AC and its biomechanical properties. Approach: Human cartilage samples ( n = 22 ) were extracted from the right knee joint of three cadaver donors (one female, aged 47 years, and two males, aged 64 and 68 years) obtained from a commercial biobank (Science Care, Phoenix, Arizona, United States). The samples were initially subjected to mechanical indentation testing to determine elastic [equilibrium modulus (EM) and instantaneous modulus (IM)] and dynamic [dynamic modulus (DM)] viscoelastic properties. An Abbemat 3200 automatic one-wavelength refractometer operating at 600 nm was used to measure the RI of the extracted sections. Similarly, Spearman's and Pearson's correlation coefficients were employed for non-normal and normal datasets, respectively, to determine the correlation between the depth-wise RI and biomechanical properties of the cartilage samples as a function of the collagen fibril orientation. Results: A positive correlation with statistically significant relations ( p - values < 0.05 ) was observed between the RI and the biomechanical properties (EM, IM, and DM) along the tissue depth for each zone, e.g., superficial, middle, and deep zones. Likewise, a lower positive correlation with statistically significant relations ( p - values < 0.05 ) was also observed for collagen fibril orientation of all zones with the biomechanical properties. Conclusions: The results indicate that, although the RI exhibits different levels of correlation with different biomechanical properties, the relationship varies as a function of the tissue depth. This knowledge paves the way for optically monitoring changes in AC biomechanical properties nondestructively via changes in the RI. Thus, the RI could be a potential biomarker for assessing the mechanical competency of AC, particularly in degenerative diseases, such as osteoarthritis.


Asunto(s)
Cartílago Articular , Refractometría , Humanos , Cartílago Articular/fisiología , Cartílago Articular/química , Persona de Mediana Edad , Femenino , Masculino , Anciano , Fenómenos Biomecánicos/fisiología , Refractometría/métodos , Articulación de la Rodilla/fisiología , Viscosidad , Módulo de Elasticidad/fisiología
2.
Ann Biomed Eng ; 52(9): 2521-2533, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38902468

RESUMEN

In order to improve the ability of clinical diagnosis to differentiate articular cartilage (AC) injury of different origins, this study explores the sensitivity of mid-infrared (MIR) spectroscopy for detecting structural, compositional, and functional changes in AC resulting from two injury types. Three grooves (two in parallel in the palmar-dorsal direction and one in the mediolateral direction) were made via arthrotomy in the AC of the radial facet of the third carpal bone (middle carpal joint) and of the intermediate carpal bone (the radiocarpal joint) of nine healthy adult female Shetland ponies (age = 6.8 ± 2.6 years; range 4-13 years) using blunt and sharp tools. The defects were randomly assigned to each of the two joints. Ponies underwent a 3-week box rest followed by 8 weeks of treadmill training and 26 weeks of free pasture exercise before being euthanized for osteochondral sample collection. The osteochondral samples underwent biomechanical indentation testing, followed by MIR spectroscopic assessment. Digital densitometry was conducted afterward to estimate the tissue's proteoglycan (PG) content. Subsequently, machine learning models were developed to classify the samples to estimate their biomechanical properties and PG content based on the MIR spectra according to injury type. Results show that MIR is able to discriminate healthy from injured AC (91%) and between injury types (88%). The method can also estimate AC properties with relatively low error (thickness = 12.7% mm, equilibrium modulus = 10.7% MPa, instantaneous modulus = 11.8% MPa). These findings demonstrate the potential of MIR spectroscopy as a tool for assessment of AC integrity changes that result from injury.


Asunto(s)
Cartílago Articular , Espectrofotometría Infrarroja , Femenino , Cartílago Articular/lesiones , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/metabolismo , Animales , Caballos , Espectrofotometría Infrarroja/métodos , Aprendizaje Automático , Proteoglicanos/metabolismo
3.
J Opt Soc Am A Opt Image Sci Vis ; 40(12): 2205-2214, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086029

RESUMEN

Optical properties of biological tissues, such as refractive index, are fundamental properties, intrinsically linked to a tissue's composition and structure. This study aims to investigate the variation of refractive index (RI) of human articular cartilage along the tissue depth (via collagen fibril orientation and optical density) and integrity (based on Mankin and Osteoarthritis Research Society International (OARSI) scores). The results show the relationship between RI and PG content (p=0.042), collagen orientation (p=0.037), and OARSI score (p=0.072). When taken into account, the outcome of this study suggests that the RI of healthy cartilage differs from that of pathological cartilage (p=0.072). This could potentially provide knowledge on how progressive tissue degeneration, such as osteoarthritis, affects changes in cartilage RI, which can, in turn, be used as a potential optical biomarker of tissue pathology.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/química , Cartílago Articular/patología , Refractometría/métodos , Osteoartritis/patología , Colágeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...