Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Iran Biomed J ; 26(4): 279-90, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35690915

RESUMEN

Background: One of the most widely used anticancer agents is microbial L-ASNase. Herein, we assessed the biochemical and biological properties of an isolated L-ASNase from a Gram-negative bacteria strain, Escherichia coli MF-107. Methods: Using garden asparagus, we obtained several bacterial isolates. These strains were further screened for L-ASNase activity. A promising bacterial isolate was selected for L-ASNase production and subsequent purification. The molecular weight of purified L-ASNase was determined. The MTT assay was applied to assess the cytotoxic effect of the purified enzyme. Also, for caspase activity determination and the apoptotic effect of purified enzyme on in cells, we conducted a real-time PCR method. Results: The molecular weight of the enzyme was approximately 37 kDa. In the pH range of 7.5 to 8, the enzyme had considerable stability. At 35 °C, the purified L-ASNase optimum activity was recorded. The cytotoxic effect of the enzyme on treated cells was dose-dependent with an IC50 value of 5.7 IU/ml. The Bax gene expression considerably raised by 5.75-fold (p < 0.001) upon L-ASNase treatment. On the other hand, the anti-apoptotic Bcl-2 gene expression showed a 2.63-fold increase compared to the control (p < 0.05). It was detected that the mRNA levels of caspase-3 and p53 were considerably upregulated (5.93 and 1.85-fold, respectively). We did not find any alternation in the caspase-8 activity of the treated cells compared to untreated cells. Conclusion: In this research, the proliferation of the breast cancer cells remarkably inhibited via the cytotoxic effect of isolated L-ASNase from microbial sources.


Asunto(s)
Antineoplásicos , Infecciones por Escherichia coli , Asparaginasa , Escherichia coli , Humanos , Células MCF-7
2.
Iran J Pharm Res ; 20(3): 609-617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34904012

RESUMEN

Recently, it has been found that abnormal activation of inflammasomes, the intracellular multiprotein complexes, plays an important role in the pathogenesis and the development of inflammatory diseases. To determine whether the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in chronic inflammatory condition reported in glomerulonephritic- hemodialysis (HD) patients, we investigated the mRNA levels of NLRP3, CASP-1, ASC, IL-1ß, IL-18, NLRC4, and P2X7 in human peripheral blood mononuclear cells (PBMCs) collected from 28 glomerulonephritic-HD patients. To confirm the mRNA quantification results, we investigated the IL-1ß content and Caspase 1 activity in serum and PBMC lysates, respectively. Compared with PBMCs derived from healthy subjects, genes encoding proinflammatory cytokines such as IL-1ß and IL-18 as well as NLRP3, ASC, CASP-1 were markedly overexpressed in those derived from patients. Moreover, there was no significant difference between the expression level of P2X 7 mRNA in PBMCs isolated from glomerulonephritis-HD patients and controls. The serum level of active IL1-ß and cell lysate CASP-1 activity were up-regulated in patients compared to controls. We also revealed that PBMCs isolated from glomerulonephritis-HD patients had elevated mRNA levels of NLRC4 compared to controls, suggesting the priming of NLRC4 inflammasome. These results revealed that the NLRP3-ASC-caspase-1 axis might have a role in increased inflammation severity reported in glomerulonephritic patients undergoing hemodialysis. These findings provide new insights into molecular mechanisms underlying chronic inflammation in HD- glomerulonephritic patients. Additionally, the NLRP3 inflammasome pathway can be attractive as a potential therapeutic target for complication avoidance in HD- glomerulonephritic patients.

3.
Artif Cells Nanomed Biotechnol ; 47(1): 1603-1609, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31027437

RESUMEN

Synthesis of silver and silver based nanoparticles using microorganisms has received profound interest because of obtaining nanoparticles with unique physicochemical and biological properties. In the current study, for the first time, synthesis of silver chloride nanoparticles (AgClNPs) using cell-free supernatant of Escherichia coli culture is reported. Prepared AgClNPs were characterized by EDS, XRD and FESE. Data revealed the synthesized nanoparticles, mostly, have a spherical shape with an average size of 13 nm. Additionally, MTT assay elucidated a dose-dependent cytotoxicity of AgClNPs against MCF-7 cells (IC50 = 44 µg/mL). Quantitative real-time reverse transcription-PCR and colourimetric assays were employed to investigate the mechanism of cell toxicity in several cell death pathways. The results revealed the ability of AgClNPs to upregulate Bax/Bcl-2 ratio and p53 at mRNA level. Moreover, other apoptotic factors such as caspase-3, 8 and 9 were also upregulated at both mRNA and proteome levels. Finally, apoptosis induction was confirmed by Annexin-V/PI detection assay. Based on the obtained data, biosynthesized AgClNPs using E. coli cell-free supernatant exhibit a cytotoxic effect on human breast cancer cells through up-regulation of apoptotic factors, which suggest them as anti-tumour agents for further investigations.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Escherichia coli/metabolismo , Nanopartículas , Nanotecnología , Compuestos de Plata/metabolismo , Compuestos de Plata/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Escherichia coli/citología , Células HEK293 , Humanos , Células MCF-7 , Biosíntesis de Proteínas/efectos de los fármacos , Compuestos de Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...