Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Heliyon ; 10(18): e37952, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39328563

RESUMEN

Hydrogels are used in modern wound dressings due to their ability to provide comfort with quick healing. However, poor mechanical properties of hydrogels limit their availability in commercial wound dressings. Nonwovens are highly porous, strong, and flexible structures that can provide support to hydrogels without compromising their properties. In this study, a cost-effective and sustainable hydroentangled nonwoven from industrial cotton waste was prepared and incorporated into alginate hydrogel for wound dressings. The novel composite of hydroentangled cotton nonwoven and alginate hydrogel was synthesized by a simple sol-gel technique. The effect of concentration of alginate hydrogel (0.5 wt%, 1 wt%, 1.5 wt %) and drying temperature (20 °C, 40 °C, 60 °C) of composite was analyzed for high wound exudates. The properties of prepared composite samples were characterized by scanning electron microscopy (SEM), XRD, tensile strength, tear strength, Air permeability, moisture management wound exudate test, and quantitative antimicrobial testing. Moreover, the comfort performance of these samples was evaluated by air permeability and moisture management testing. The properties of developed composites are highly dependent on the concentration of alginate and drying temperature. The results showed that maximum fluid absorbency (%) of 650 was achieved with good comfort properties. This study can help to increase the commercial availability of hydrogel-based wound dressings.

4.
Sci Rep ; 14(1): 19439, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169082

RESUMEN

Developing new therapeutic strategies to target specific molecular pathways has become a primary focus in modern drug discovery science. Fibroblast growth factor receptor 2 (FGFR2) is a critical signaling protein involved in various cellular processes and implicated in numerous diseases, including cancer. Existing FGFR2 inhibitors face limitations like drug resistance and specificity issues. In this study, we present an integrated structure-based bioinformatics analysis to explore the potential of FGFR2 inhibitors-like compounds from the PubChem database with the Tanimoto threshold of 80%. We conducted a structure-based virtual screening approach on a dataset comprising 2336 compounds sourced from the PubChem database. Primarily, the selection of promising compounds was based on several criteria, such as drug-likeness, binding affinities, docking scores, and selectivity. Further, we conducted all-atom molecular dynamics (MD) simulations for 200 ns, followed by an essential dynamics analysis. Finally, a promising FGFR2 inhibitor with PubChem CID:507883 (1-[7-(1H-benzimidazol-2-yl)-4-fluoro-1H-indol-3-yl]-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione) was screened out from the study. This compound indicates a higher potential for inhibiting FGFR2 than the control inhibitor, Zoligratinib. The identified compound, CID:507883 shows >80% structural similarity with Zoligratinib. ADMET analysis showed promising pharmacokinetic potential of the screened compound. Overall, the findings indicate that the compound CID:507883 may have promising potential to serve as a lead candidate against FGFR2 and could be further exploited in therapeutic development.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Unión Proteica , Desarrollo de Medicamentos , Relación Estructura-Actividad
5.
Front Chem ; 12: 1392650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136033

RESUMEN

Precision medicine has revolutionized modern cancer therapeutic management by targeting specific molecular aberrations responsible for the onset and progression of tumorigenesis. ROS proto-oncogene 1 (ROS1) is a receptor tyrosine kinase (RTK) that can induce tumorigenesis through various signaling pathways, such as cell proliferation, survival, migration, and metastasis. It has emerged as a promising therapeutic target in various cancer types. However, there is very limited availability of specific ROS1 inhibitors for therapeutic purposes. Exploring repurposed drugs for rapid and effective treatment is a useful approach. In this study, we utilized an integrated approach of virtual screening and molecular dynamics (MD) simulations of repurposing existing drugs for ROS1 kinase inhibition. Using a curated library of 3648 FDA-approved drugs, virtual screening identified drugs capable of binding to ROS1 kinase domain. The results unveil two hits, Midostaurin and Alectinib with favorable binding profiles and stable interactions with the active site residues of ROS1. These hits were subjected to stability assessment through all-atom MD simulations for 200 ns. MD results showed that Midostaurin and Alectinib were stable with ROS1. Taken together, the study showed a rational framework for the selection of repurposed Midostaurin and Alectinib with ROS1 inhibitory potential for therapeutic management after further validation.

7.
Brain Res ; 1845: 149202, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216694

RESUMEN

Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.

8.
Noncoding RNA Res ; 9(4): 1222-1234, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39036600

RESUMEN

Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.

9.
Explor Target Antitumor Ther ; 5(3): 477-494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966181

RESUMEN

In recent times, there have been notable advancements in comprehending the potential anti-cancer effects of chrysin (CH), a naturally occurring flavonoid compound found abundantly in various plant sources like honey, propolis, and certain fruits and vegetables. This active compound has garnered significant attention due to its promising therapeutic qualities and minimal toxicity. CH's ability to combat cancer arises from its multifaceted mechanisms of action, including the initiation of apoptosis and the inhibition of proliferation, angiogenesis, metastasis, and cell cycle progression. CH also displays potent antioxidant and anti-inflammatory properties, effectively counteracting the harmful molecules that contribute to DNA damage and the development of cancer. Furthermore, CH has exhibited the potential to sensitize cancer cells to traditional chemotherapy and radiotherapy, amplifying the effectiveness of these treatments while reducing their negative impact on healthy cells. Hence, in this current review, the composition, chemistry, mechanisms of action, safety concerns of CH, along with the feasibility of its nanoformulations. To conclude, the recent investigations into CH's anti-cancer effects present a compelling glimpse into the potential of this natural compound as a complementary therapeutic element in the array of anti-cancer approaches, providing a safer and more comprehensive method of combating this devastating ailment.

10.
Heliyon ; 10(13): e32755, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027624

RESUMEN

The involvement of neuroinflammation in the pathogenesis of neurodegenerative disorders (NDs) is very significant. Currently, only symptomatic treatments exist, and there are no drugs that modify the progression of Alzheimer's disease (AD) or other NDs. Consequently, there is increasing attention on addressing AD-related neuroinflammation using anti-inflammatory compounds and antioxidants. Currently, there is a growing exploration of dietary phytochemicals as potential therapeutic agents for treating inflammation. Citral, a monoterpene, is under increasing investigation due to its neuroprotective effects. The dysregulation of iron homeostasis is a crucial factor in supporting neuroinflammation, underscoring the significance of proper iron balance. Human transferrin (htf) is a major player involved in iron homeostasis. In this study, we examined binding and dynamics of htf-citral complex through diverse experimental methods. Molecular docking studies revealed that citral binds to crucial residues of htf, forming a stable complex. UV-visible spectroscopy demonstrated binding of citral with htf with good affinity, evident from binding constant of 1.48 × 105 M-1. Further, fluorescence spectroscopy entrenched a stable htf-citral complex formation; citral demonstrates an excellent binding affinity to htf with a binding constant of 106 M-1. Moreover, fluorescence binding assay at various temperatures deciphered htf-citral complex to be driven by both static and dynamic quenching. The analysis of enthalpy change (ΔH) and entropy change (ΔS) demonstrated that htf-citral complex formation was driven mainly by hydrophobic interactions.The current work gives a platform to develop innovative therapeutic strategies targeting neuroinflammation through citral, particularly iron homeostasis.

11.
Front Pharmacol ; 15: 1424175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005934

RESUMEN

Histone deacetylase 3 (HDAC3) is a member of the histone deacetylase family that has emerged as a crucial target in the quest for novel therapeutic interventions against various complex diseases, including cancer. The repositioning of FDA-approved drugs presents a promising avenue for the rapid discovery of potential HDAC3 inhibitors. In this study, we performed a structure-based virtual screening of FDA-approved drugs obtained from DrugBank. Candidate hits were selected based on their binding affinities and interactions with HDAC3. These promising hits were then subjected to a comprehensive assessment of their biological properties and drug profiles. Our investigation identified two FDA-approved drugs, Imatinib and Carpipramine, characterized by their exceptional affinity and specificity for the binding pocket of HDAC3. These molecules demonstrated a strong preference for HDAC3 binding site and formed interactions with functionally significant residues within the active site pocket. To gain deeper insights into the binding dynamics, structural stability, and interaction mechanisms, we performed molecular dynamics (MD) simulations spanning 300 nanoseconds (ns). The results of MD simulations indicated that Imatinib and Carpipramine stabilized the structure of HDAC3 and induced fewer conformational changes. Taken together, the findings from this study suggest that Imatinib and Carpipramine may offer significant therapeutic potential for treating complex diseases, especially cancer.

12.
Pathol Res Pract ; 260: 155430, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39038389

RESUMEN

Due to the increasing incidence of cancer and the difficulties in determining the safety profile of existing therapeutic approaches, cancer research has recently become heavily involved in the search for new therapeutic approaches. The therapeutic significance of natural substances, especially flavonoids, against the onset and progression of cancer has been emphasized in traditional food-based medicine. Interestingly, the flavone luteolin possesses biological effects that have been linked to its anti-inflammatory, antioxidant, and anticancer effects. Luteolin interacts with several downstream chemicals and signaling pathways, including those involved in apoptosis, autophagy, cell cycle progression, and angiogenesis, to exert its anticancer effects on various cancerous cells. A complete understanding of both intrinsic and extrinsic apoptotic pathways, autophagy, and, most critically, the nanodelivery of luteolin in liver cancer is provided in the current review.


Asunto(s)
Apoptosis , Neoplasias Hepáticas , Luteolina , Transducción de Señal , Luteolina/farmacología , Luteolina/uso terapéutico , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Autofagia/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
13.
Diabetes Metab Syndr Obes ; 17: 2293-2301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859997

RESUMEN

Background: The objective of this study was to determine the prevalence of anemia in patients with type 2 diabetes mellitus and to identify the set of anthropometric and biochemical factors that jointly influence the diabetic and anemic patients including body mass index and kidney function. . Methods: A retrospective cross-sectional design study that was carried out in a private medical center in Palestine. The study included a total of 453 patients with type 2 diabetes. Inclusion criteria included all patients (18 years or older) suffering from type 2 Diabetes mellitus attended the diabetic clinic from the 1st of January 2018, till 30th of December 2018. . Results: A total number of 453 diabetic patients were recruited in the study. Male constituted 48.5% (n=220) of the study sample and 51.4% (n=233) were female. Of total 453 diabetic patients, 38.4% (95% CI, 34%-43%) had anemia. The results of statistical modeling showed that female gender (AOR 18.5; 95% CI 9.35-21.97), presence of hypertension (AOR 2.11; 95% CI 1.98- 4.25), high BMI (AOR 1.101; 95% CI 1.045-1.159), high Serum Creatinine (AOR 1.72; 95% CI 1.22-2.13), high BUN level (AOR 1.22; 95% CI 1.145-1.301) and low e-GFR (AOR 0.571; 95% CI 0.271-0.872) are strong determents of anemia in type 2 diabetic patients. . Conclusion: The results of the current study revealed a high prevalence of Anemia among type 2 diabetes Mellitus patients. A significant association was reported between Anemia, kidney functions and body mass index. .

15.
EXCLI J ; 23: 570-599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887390

RESUMEN

Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).

16.
J Alzheimers Dis ; 100(2): 475-485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875044

RESUMEN

Background: HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) plays a pivotal role as a control enzyme in ketogenesis, and its association with the amyloid-ß protein precursor (AßPP) in mitochondria implicates a potential involvement in Alzheimer's disease (AD) pathophysiology. Objective: Our study aimed at identifying repurposed drugs using the DrugBank database capable of inhibiting HMGCS2 activity. Methods: Exploiting the power of drug repurposing in conjunction with virtual screening and molecular dynamic (MD) simulations against 'HMGCS2', we present new in-silico insight into structure-based drug repurposing. Results: The initial molecules were screened for their binding affinity to HMGCS2. Subsequent interaction analyses and extensive 300 ns MD simulations were conducted to explore the conformational dynamics and stability of HMGCS2 in complex with the screened molecules, particularly Penfluridol and Lurasidone. Conclusions: The study revealed that HMGCS2 forms stable protein-ligand complexes with Penfluridol and Lurasidone. Our findings indicate that Penfluridol and Lurasidone competitively bind to HMGCS2 and warrant their further exploration as potential repurposed molecules for anti-Alzheimer's drug development.


Asunto(s)
Enfermedad de Alzheimer , Reposicionamiento de Medicamentos , Hidroximetilglutaril-CoA Sintasa , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
17.
J Multidiscip Healthc ; 17: 2563-2576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803617

RESUMEN

Background: Providing accurate and sufficient information is a crucial requirement for delivering effective diabetes care, making it essential for community pharmacists to possess adequate knowledge of diabetes mellitus (DM) and its management. Objective: To investigate community pharmacists' level of expertise and engagement in providing counseling and health promotion services for individuals with DM in the United Arab Emirates (UAE). Methods: A cross-sectional study design was used. The community Pharmacies were chosen via random sampling and researchers then conducted face-to-face interviews with them using the structured questionnaire. The questionnaire included demographic data, 14 questions on the knowledge and 9 questions about the practice concerning pharmaceutical care for Diabetes Mellitus. Results: The average age ± SD was 31 ± 6.3. Of the total 516 community pharmacists recruited in the study, 37.2% (n=192) were male and 62.8% (n=324) were female. The average knowledge score about DM prevention and management was 9.7 with a 95% confidence interval (CI) [9.5, 9.9] and the average practice score about DM prevention and management was 7.1 with a 95% confidence interval (CI) [6.9, 7.2]. Better knowledge scores were observed in chief pharmacists (OR 1.29; 95% CI 1.08-1.56), pharmacists with 6-10 Years of experience (OR 6.92; 95% CI 3.43-8.86), pharmacist with > 10 years of experience (OR 1.99; 95% CI 1.67-2.36), when the number of patients the pharmacist serve is 5-10 (OR 1.27; 95% CI 1.06-1.53) and being trained on DM prevention and management (OR 2.18; 95% CI 1.92-2.47). Similarly, better practice scores were observed in older participants (OR1.02; 95% CI 1.001-1.03), chain pharmacies (OR 1.42; 95% CI 1.20-1.68), chief pharmacists (OR 1.56; 95% CI 1.18-2.06), when the number of patients the pharmacists serve was 5-10 (OR 12.26; 95% CI 7.26-16.19), when the number of patients the pharmacists serve was 11-20 (OR 4.23; 95% CI 3.54-5.06) and being trained on DM prevention and management (OR 1.33; 95% CI 1.11-1.59). The most commonly reported barriers to providing counseling and health promotion services for diabetes mellitus (DM) in community pharmacies include a lack of coordination with other healthcare professionals (77%) and insufficient knowledge or clinical skills (68.7%). Conclusion: Our study revealed that community pharmacy staff members displayed a noteworthy level of involvement in providing pharmaceutical care services for patients with diabetes mellitus. Based on these findings, it is recommended to enhance pharmacy education by incorporating more advanced, evidence-based training and curricula focusing on disease management and appropriate therapies, particularly for diabetes.

18.
Front Pharmacol ; 15: 1397332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799161

RESUMEN

In present times, vanillin stands out as a promising therapeutic molecule that can be implicated in the treatment of neurodegenerative disorders (NDs), notably Alzheimer's disease (AD). This can be attributed to the highly potent scavenging activity of vanillin against reactive oxygen species (ROS). Oxidative stress leads to generation of ROS that serves a critical role in AD's pathological progression. It is apparent from various studies that diets rich in polyphenols prevent oxidative stress associated with AD development, implying the crucial role of vanillin in AD therapeutics. It is crucial to maintain iron balance to manage AD associated oxidative stress, unveiling the significance of human transferrin (hTf) that maintains iron homeostasis. Here, we have performed an integrated study of spectroscopic and computational approaches to get insight into the binding mechanism of vanillin with hTf. In the preliminary study, molecular docking deciphered that vanillin primarily occupies the hTf binding pocket, forming multiple interactions with its key residues. Moreover, the binding mechanism was evaluated at an atomistic level employing comprehensive molecular dynamic (MD) simulation. MD analysis demonstrated that binding of vanillin to hTf stabilizes its structure, without inducing any significant alterations in its native conformation. The docked complex was maintained throughout the simulations without changing its original conformation. Essential dynamics analysis further confirms that hTf achieved a stable conformation with vanillin. The outcomes were further supplemented by fluorescence spectroscopy which confirms the formation of stable hTf-vanillin complex. Taken together, the current study unveils the interaction mechanism of vanillin with hTf and providing a platform to use vanillin in AD therapeutics in the context of iron homeostasis.

19.
CNS Neurosci Ther ; 30(5): e14763, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38790149

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a degenerative neurological condition marked by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta. The precise etiology of PD remains unclear, but emerging evidence suggests a significant role for disrupted autophagy-a crucial cellular process for maintaining protein and organelle integrity. METHODS: This review focuses on the role of non-coding RNAs (ncRNAs) in modulating autophagy in PD. We conducted a comprehensive review of recent studies to explore how ncRNAs influence autophagy and contribute to PD pathophysiology. Special attention was given to the examination of ncRNAs' regulatory impacts in various PD models and patient samples. RESULTS: Findings reveal that ncRNAs are pivotal in regulating key processes associated with PD progression, including autophagy, α-synuclein aggregation, mitochondrial dysfunction, and neuroinflammation. Dysregulation of specific ncRNAs appears to be closely linked to these pathogenic processes. CONCLUSION: ncRNAs hold significant therapeutic potential for addressing autophagy-related mechanisms in PD. The review highlights innovative therapeutic strategies targeting autophagy-related ncRNAs and discusses the challenges and prospective directions for developing ncRNA-based therapies in clinical practice. The insights from this study underline the importance of ncRNAs in the molecular landscape of PD and their potential in novel treatment approaches.


Asunto(s)
Autofagia , Enfermedad de Parkinson , ARN no Traducido , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Autofagia/fisiología , Autofagia/genética , ARN no Traducido/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...