Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 9236, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39455551

RESUMEN

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a negative-sense RNA virus spread by Hyalomma genus ticks across Europe, Asia, and Africa. CCHF disease begins as a non-specific febrile illness which may progress into a severe hemorrhagic disease with no widely approved or highly efficacious interventions currently available. Recently, we reported a self-replicating, alphavirus-based RNA vaccine that expresses the CCHFV nucleoprotein and is protective against lethal CCHFV disease in mice. This vaccine induces high titers of non-neutralizing anti-NP antibodies and we show here that protection does not require Fc-gamma receptors or complement. Instead, vaccinated mice deficient in the intracellular Fc-receptor TRIM21 were unable to control the infection despite mounting robust CCHFV-specific immunity. We also show that passive transfer of NP-immune sera confers significant TRIM21-dependent protection against lethal CCHFV challenge. Together our data identifies TRIM21-mediated mechanisms as the Fc effector function of protective antibodies against the CCHFV NP and provides mechanistic insight into how vaccines against the CCHFV NP confer protection.


Asunto(s)
Anticuerpos Antivirales , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Nucleoproteínas , Animales , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Anticuerpos Antivirales/inmunología , Ratones , Fiebre Hemorrágica de Crimea/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Nucleoproteínas/inmunología , Nucleoproteínas/metabolismo , Ribonucleoproteínas/inmunología , Ribonucleoproteínas/metabolismo , Ratones Noqueados , Humanos , Femenino , Ratones Endogámicos C57BL , Vacunas Virales/inmunología , Anticuerpos Neutralizantes/inmunología , Inmunización Pasiva
2.
NPJ Vaccines ; 9(1): 86, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769294

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne febrile illness with a wide geographic distribution. In recent years the geographic range of Crimean-Congo hemorrhagic fever virus (CCHFV) and its tick vector have increased, placing an increasing number of people at risk of CCHFV infection. Currently, there are no widely available vaccines, and although the World Health Organization recommends ribavirin for treatment, its efficacy is unclear. Here we evaluate a promising replicating RNA vaccine in a rhesus macaque (Macaca mulatta) model of CCHF. This model provides an alternative to the established cynomolgus macaque model and recapitulates mild-to-moderate human disease. Rhesus macaques infected with CCHFV consistently exhibit viremia, detectable viral RNA in a multitude of tissues, and moderate pathology in the liver and spleen. We used this model to evaluate the immunogenicity and protective efficacy of a replicating RNA vaccine. Rhesus macaques vaccinated with RNAs expressing the CCHFV nucleoprotein and glycoprotein precursor developed robust non-neutralizing humoral immunity against the CCHFV nucleoprotein and had significant protection against the CCHFV challenge. Together, our data report a model of CCHF using rhesus macaques and demonstrate that our replicating RNA vaccine is immunogenic and protective in non-human primates after a prime-boost immunization.

3.
J Infect Dis ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487996

RESUMEN

The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific IgG responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no difference in survival outcomes were measured among all three groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.

4.
Front Cell Infect Microbiol ; 14: 1341891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404292

RESUMEN

Lassa virus (LASV) causes an acute multisystemic hemorrhagic fever in humans known as Lassa fever, which is endemic in several African countries. This manuscript focuses on the progression of disease in cynomolgus macaques challenged with aerosolized LASV and serially sampled for the development and progression of gross and histopathologic lesions. Gross lesions were first noted in tissues on day 6 and persisted throughout day 12. Viremia and histologic lesions were first noted on day 6 commencing with the pulmonary system and hemolymphatic system and progressing at later time points to include all systems. Immunoreactivity to LASV antigen was first observed in the lungs of one macaque on day 3 and appeared localized to macrophages with an increase at later time points to include immunoreactivity in all organ systems. Additionally, this manuscript will serve as a detailed atlas of histopathologic lesions and disease progression for comparison to other animal models of aerosolized Arenaviral disease.


Asunto(s)
Fiebre de Lassa , Virus Lassa , Humanos , Animales , Fiebre de Lassa/patología , Macaca fascicularis , Antígenos Virales , Viremia
5.
Elife ; 122024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416804

RESUMEN

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 hr), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10 µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 hr). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Masculino , Mesocricetus , Aerosoles y Gotitas Respiratorias
6.
EBioMedicine ; 101: 105017, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382314

RESUMEN

BACKGROUND: Crimean-Congo Haemorrhagic Fever Virus is a tick-borne bunyavirus prevalent across Asia, Africa, the Middle East, and Europe. The virus causes a non-specific febrile illness which may develop into severe haemorrhagic disease. To date, there are no widely approved therapeutics. Recently, we reported an alphavirus-based replicon RNA vaccine which expresses the CCHFV nucleoprotein (repNP) or glycoprotein precursor (repGPC) and is protective against lethal disease in mice. METHODS: Here, we evaluated engineered GPC constructs to find the minimal enhancing epitope of repGPC and test two RNA vaccine approaches to express multiple antigens in vivo to optimize protective efficacy of our repRNA. FINDINGS: Vaccination with repNP and a construct expressing just the Gc antigen (repGc-FL) resulted in equivalent immunogenicity and protective efficacy compared to original repNP + repGPC vaccination. This vaccine was protective when prepared in either of two vaccine approaches, a mixed synthesis reaction producing two RNAs in a single tube and a single RNA expressing two antigens. INTERPRETATION: Overall, our data illustrate two vaccine approaches to deliver two antigens in a single immunization. Both approaches induced protective immune responses against CCHFV in this model. These approaches support their continued development for this and future vaccine candidates for CCHFV and other vaccines where inclusion of multiple antigens would be optimal. FUNDING: This work was supported by the Intramural Research Program, NIAID/NIH, HDT Bio and MCDC Grant #MCDC2204-011.

7.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38165394

RESUMEN

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Asunto(s)
COVID-19 , Profilaxis Pre-Exposición , Animales , Macaca mulatta , COVID-19/prevención & control , SARS-CoV-2/genética , Anticuerpos Antivirales , Anticuerpos Monoclonales , Macaca fascicularis , ADN , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética
8.
Nat Commun ; 14(1): 6592, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852960

RESUMEN

Limited data is available on the effect of vaccination and previous virus exposure on the nature of SARS-CoV-2 transmission and immune-pressure on variants. To understand the impact of pre-existing immunity on SARS-CoV-2 airborne transmission efficiency, we perform a transmission chain experiment using naïve, intranasally or intramuscularly AZD1222 vaccinated, and previously infected hamsters. A clear gradient in transmission efficacy is observed: Transmission in hamsters vaccinated via the intramuscular route was reduced over three airborne chains (approx. 60%) compared to naïve animals, whereas transmission in previously infected hamsters and those vaccinated via the intranasal route was reduced by 80%. We also find that the Delta B.1.617.2 variant outcompeted Omicron B.1.1.529 after dual infection within and between hosts in naïve, vaccinated, and previously infected transmission chains, yet an increase in Omicron B.1.1.529 competitiveness is observed in groups with pre-existing immunity against Delta B.1.617.2. This correlates with an increase in the strength of the humoral response against Delta B.1.617.2, with the strongest response seen in previously infected animals. These data highlight the continuous need to improve vaccination strategies and address the additional evolutionary pressure pre-existing immunity may exert on SARS-CoV-2.


Asunto(s)
COVID-19 , Vacunas , Animales , Cricetinae , Humanos , COVID-19/prevención & control , ChAdOx1 nCoV-19 , SARS-CoV-2
9.
Vet Sci ; 10(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37756057

RESUMEN

Coronavirus Infectious Disease 2019 (COVID-19) initiated a global pandemic that thus far has resulted in the death of over 6.5 million people internationally. Understanding the viral tropism during the initial, subclinical phase of infection is critical to develop targeted vaccines and therapeutics. With the continued emergence of variants of concern, particularly those that appear to have a tropism for the upper respiratory tract, understanding the complete pathogenesis is critical to develop more effective interventions. Thus far, the Syrian hamster has served as the most consistent small animal model of SARS-CoV-2 infection for mild to moderate respiratory disease. Herein, we utilize histopathology and immunohistochemistry to characterize the peracute phase of disease initiating at 6-h-post-inoculation in the intranasal inoculation route Syrian hamster model. Inflammation and viral replication initiates in the respiratory epithelium of nasal turbinates as early as 12-h-post-inoculation and moves caudally through the nasal cavity by 36-h-post inoculation. Lower respiratory involvement can be detected as early as 12-h-post inoculation in the intranasal inoculated hamster model. These data highlight the importance of rostral nasal cavity sampling at early timepoints for detection of SARS-CoV-2 in the Syrian hamster model.

10.
PLoS Negl Trop Dis ; 17(9): e0011620, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37682988

RESUMEN

Numerous arenaviruses have been identified throughout the Americas and a subset of these viruses cause viral hemorrhagic fever in humans. This study compared the pathology and viral RNA distribution in Hartley guinea pigs challenged with two human-disease causing New World arenaviruses, Junin virus (JUNV) or Guanarito virus (GTOV). Histopathologic analysis and RNA in situ hybridization revealed similar pathology and viral RNA distribution for both groups of animals challenged with either JUNV or GTOV on days 3, 7, 10 and 12 post exposure (PE). Gross lesions were first observed on day 7 and primarily involved the lungs and liver. The most severe histologic lesions occurred in the lymph nodes, spleen, and thymus and included lymphoid depletion and necrosis which increased in severity over time. Extensive necrosis was also observed in the bone marrow on day 12. Minimal to mild inflammation with and without necrosis was observed in the choroid plexus of the brain, choroid of the eye, intestinal tract, lung and adrenal gland. Significant liver lesions were rare, consisting predominantly of hepatocyte vacuolation. Viral RNA labeling was identified in nearly all organs examined, was often extensive in certain organs and generally increased over time starting on day 7. Our data demonstrate the guinea pig may serve as a useful model to study New World arenavirus infection in humans and for the evaluation and development of medical countermeasures.


Asunto(s)
Arenavirus del Nuevo Mundo , Virus Junin , Humanos , Cobayas , Animales , ARN Viral/genética , Hígado , Encéfalo
11.
Sci Adv ; 9(36): eadj1428, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672587

RESUMEN

Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.


Asunto(s)
Enfermedad del Bosque de Kyasanur , Vacunas , Animales , Enfermedad del Bosque de Kyasanur/prevención & control , Vacunación , Reacciones Cruzadas , Macaca
12.
Front Immunol ; 14: 1216225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731485

RESUMEN

Introduction: Immune correlates of protection afforded by PHV02, a recombinant vesicular stomatitis (rVSV) vector vaccine against Nipah virus (NiV) disease, were investigated in the African green monkey (AGM) model. Neutralizing antibody to NiV has been proposed as the principal mediator of protection against future NiV infection. Methods: Two approaches were used to determine the correlation between neutralizing antibody levels and outcomes following a severe (1,000 median lethal doses) intranasal/intratracheal (IN/IT) challenge with NiV (Bangladesh): (1) reduction in vaccine dose given 28 days before challenge and (2) challenge during the early phase of the antibody response to the vaccine. Results: Reduction in vaccine dose to very low levels led to primary vaccine failure rather than a sub-protective level of antibody. All AGMs vaccinated with the nominal clinical dose (2 × 107 pfu) at 21, 14, or 7 days before challenge survived. AGMs vaccinated at 21 days before challenge had neutralizing antibodies (geometric mean titer, 71.3). AGMs vaccinated at 7 or 14 days before challenge had either undetectable or low neutralizing antibody titers pre-challenge but had a rapid rise in titers after challenge that abrogated the NiV infection. A simple logistic regression model of the combined studies was used, in which the sole explanatory variable was pre-challenge neutralizing antibody titers. For a pre-challenge titer of 1:5, the predicted survival probability is 100%. The majority of animals with pre-challenge neutralizing titer of ≥1:20 were protected against pulmonary infiltrates on thoracic radiograms, and a majority of those with titers ≥1:40 were protected against clinical signs of illness and against a ≥fourfold antibody increase following challenge (indicating sterile immunity). Controls receiving rVSV-Ebola vaccine rapidly succumbed to NiV challenge, eliminating the innate immunity stimulated by the rVSV vector as a contributor to survival in monkeys challenged as early as 7 days after vaccination. Discussion and conclusion: It was concluded that PHV02 vaccine elicited a rapid onset of protection and that any detectable level of neutralizing antibody was a functional immune correlate of survival.


Asunto(s)
Vacunas contra el Virus del Ébola , Fiebre Hemorrágica Ebola , Infecciones por Henipavirus , Virus Nipah , Estomatitis Vesicular , Animales , Chlorocebus aethiops , Infecciones por Henipavirus/prevención & control , Anticuerpos Neutralizantes
13.
Antiviral Res ; 218: 105703, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611878

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) causes Crimean-Congo hemorrhagic fever (CCHF) in humans with high morbidity and mortality. Currently, there is neither an approved antiviral drug nor a vaccine against CCHFV. In this study, we describe a lethal model of CCHFV infection using a mouse-adapted strain of CCHFV (MA-CCHFV) in adult wild-type male mice. Infected mice developed high viral loads, tissue pathology, and inflammatory immune responses before ultimately succumbing to the infection. We used the model to evaluate the protective efficacy of nucleoside analogs monulpiravir, favipiravir, ribavirin, the antibiotic tigecycline and the corticosteroids dexamethasone and methylprednisolone against lethal CCHFV infection. Tigecycline, monulpiravir and the corticosteroids failed to protect mice from lethal MA-CCHFV infection. In contrast, favipiravir and ribavirin protected animals from clinical disease and death even when treatment was delayed. Despite demonstrating uniform protection, CCHFV RNA persisted in survivors treated with favipiravir and ribavirin. Nevertheless, the study demonstrated the anti-CCHFV efficacy of favipiravir and ribavirin in a model with intact innate immunity and establishes this model for continued development of CCHFV countermeasures.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Humanos , Masculino , Animales , Ratones , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Ribavirina/farmacología , Ribavirina/uso terapéutico , Tigeciclina/uso terapéutico , Corticoesteroides/uso terapéutico
14.
Immunohorizons ; 7(7): 528-542, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417946

RESUMEN

Dysregulation of host metabolism is a feature of lethal SARS-CoV-2 infection. Perturbations in α-ketoglutarate levels can elicit metabolic reprogramming through 2-oxoglutarate-dependent dioxygenases (2-ODDGs), leading to stabilization of the transcription factor HIF-1α. HIF1-α activation has been reported to promote antiviral mechanisms against SARS-CoV-2 through direct regulation of ACE2 expression (a receptor required for viral entry). However, given the numerous pathways HIF-1α serves to regulate it is possible that there are other undefined metabolic mechanisms contributing to the pathogenesis of SARS-CoV-2 independent of ACE2 downregulation. In this study, we used in vitro and in vivo models in which HIF-1α modulation of ACE2 expression was negated, allowing for isolated characterization of the host metabolic response within SARS-CoV-2 disease pathogenesis. We demonstrated that SARS-CoV-2 infection limited stabilization of HIF-1α and associated mitochondrial metabolic reprogramming by maintaining activity of the 2-ODDG prolyl hydroxylases. Inhibition of 2-ODDGs with dimethyloxalylglycine promoted HIF-1α stabilization following SARS-CoV-2 infection, and significantly increased survival among SARS-CoV-2-infected mice compared with vehicle controls. However, unlike previous reports, the mechanism by which activation of HIF-1α responses contributed to survival was not through impairment of viral replication. Rather, dimethyloxalylglycine treatment facilitated direct effects on host metabolism including increased glycolysis and resolution of dysregulated pools of metabolites, which correlated with reduced morbidity. Taken together, these data identify (to our knowledge) a novel function of α-ketoglutarate-sensing platforms, including those responsible for HIF-1α stabilization, in the resolution of SARS-CoV-2 infection and support targeting these metabolic nodes as a viable therapeutic strategy to limit disease severity during infection.


Asunto(s)
COVID-19 , Dioxigenasas , Ratones , Animales , Ratones Transgénicos , Ácidos Cetoglutáricos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2
15.
Nat Commun ; 14(1): 4481, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491352

RESUMEN

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Ratones , Animales , Citocinas , SARS-CoV-2 , Ratones Transgénicos , Inflamación/genética , Modelos Animales de Enfermedad , Pulmón
16.
mBio ; 14(2): e0360622, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36809119

RESUMEN

Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.


Asunto(s)
Encefalitis Transmitida por Garrapatas , Humanos , Femenino , Animales , Ratones , Masculino , Ratones Endogámicos C57BL , Encéfalo/patología , Inflamación , ARN Viral
17.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36574296

RESUMEN

The periodic emergence of SARS-CoV-2 variants of concern (VOCs) with unpredictable clinical severity and ability to escape preexisting immunity emphasizes the continued need for antiviral interventions. Two small molecule inhibitors, molnupiravir (MK-4482), a nucleoside analog, and nirmatrelvir (PF-07321332), a 3C-like protease inhibitor, have recently been approved as monotherapy for use in high-risk patients with COVID-19. As preclinical data are only available for rodent and ferret models, here we assessed the efficacy of MK-4482 and PF-07321332 alone and in combination against infection with the SARS-CoV-2 Delta VOC in the rhesus macaque COVID-19 model. Macaques were infected with the SARS-CoV-2 Delta variant and treated with vehicle, MK-4482, PF-07321332, or a combination of MK-4482 and PF-07321332. Clinical exams were performed at 1, 2, and 4 days postinfection to assess disease and virological parameters. Notably, use of MK-4482 and PF-07321332 in combination improved the individual inhibitory effect of both drugs, resulting in milder disease progression, stronger reduction of virus shedding from mucosal tissues of the upper respiratory tract, stronger reduction of viral replication in the lower respiratory tract, and reduced lung pathology. Our data strongly indicate superiority of combined MK-4482 and PF-07321332 treatment of SARS-CoV-2 infections as demonstrated in the closest COVID-19 surrogate model of human infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Macaca mulatta , Hurones , Lactamas , Leucina , Nitrilos , Antivirales
18.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35233576

RESUMEN

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18- hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.

19.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36032963

RESUMEN

It remains poorly understood how SARS-CoV-2 infection influences the physiological host factors important for aerosol transmission. We assessed breathing pattern, exhaled droplets, and infectious virus after infection with Alpha and Delta variants of concern (VOC) in the Syrian hamster. Both VOCs displayed a confined window of detectable airborne virus (24-48 h), shorter than compared to oropharyngeal swabs. The loss of airborne shedding was linked to airway constriction resulting in a decrease of fine aerosols (1-10µm) produced, which are suspected to be the major driver of airborne transmission. Male sex was associated with increased viral replication and virus shedding in the air. Next, we compared the transmission efficiency of both variants and found no significant differences. Transmission efficiency varied mostly among donors, 0-100% (including a superspreading event), and aerosol transmission over multiple chain links was representative of natural heterogeneity of exposure dose and downstream viral kinetics. Co-infection with VOCs only occurred when both viruses were shed by the same donor during an increased exposure timeframe (24-48 h). This highlights that assessment of host and virus factors resulting in a differential exhaled particle profile is critical for understanding airborne transmission.

20.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36509288

RESUMEN

An animal model that fully recapitulates severe COVID-19 presentation in humans has been a top priority since the discovery of SARS-CoV-2 in 2019. Although multiple animal models are available for mild to moderate clinical disease, models that develop severe disease are still needed. Mink experimentally infected with SARS-CoV-2 developed severe acute respiratory disease, as evident by clinical respiratory disease, radiological, and histological changes. Virus was detected in nasal, oral, rectal, and fur swabs. Deep sequencing of SARS-CoV-2 from oral swabs and lung tissue samples showed repeated enrichment for a mutation in the gene encoding nonstructural protein 6 in open reading frame 1ab. Together, these data indicate that American mink develop clinical features characteristic of severe COVID-19 and, as such, are uniquely suited to test viral countermeasures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Animales , Visón , Pulmón/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...