RESUMEN
OBJECTIVE: This study intended to isolate a Vibrio-particular phage from the natural environment, analyse its characteristics and genome sequence, and investigate its reduction effect on V. parahaemolyticus biofilm as a biocontrol agent in squid and mackerel. METHODS: Among 21 phages, phage CAU_VPP01, isolated from beach mud, was chosen for further experiments based on host range and EOP tests. When examining the reduction effect of phage CAU_VPP01 against Vibrio parahaemolyticus biofilms on surfaces (stainless steel [SS] and polyethylene terephthalate [PET]) and food surfaces (squid and mackerel). RESULTS: The phage showed the most excellent reduction effect at a multiplicity-of-infection (MOI) 10. Three-dimensional images acquired with confocal laser scanning microscopy (CLSM) analysis were quantified using COMSTAT, which showed that biomass, average thickness, and roughness coefficient decreased when treated with the phage. Colour and texture analysis confirmed that the quality of squid and mackerel was maintained after the phage treatment. Finally, a comparison of gene expression levels determined by qRT-PCR analysis showed that the phage treatment induced a decrease in the gene expression of flaA, vp0962, andluxS, as examples. CONCLUSION: This study indicated that Vibrio-specific phage CAU_VPP01 effectively controlled V. parahaemolyticus biofilms under various conditions and confirmed that the isolated phage could possibly be used as an effective biocontrol weapon in the seafood manufacturing industry.
Asunto(s)
Bacteriófagos , Biopelículas , Alimentos Marinos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/virología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Bacteriófagos/genética , Alimentos Marinos/microbiología , Animales , Decapodiformes/microbiología , Perciformes/microbiología , Contaminación de Alimentos/prevención & control , Especificidad del Huésped , Agentes de Control BiológicoRESUMEN
This study examines the antimicrobial and antibiofilm effectiveness of baicalin and carvacrol against Salmonella enterica ser. Typhimurium on food contact surfaces and chicken meat. The minimum inhibitory concentrations (MIC) for baicalin and carvacrol were found to be 100 µg/mL and 200 µg/mL, respectively, which aligns with findings from previous studies. The compounds exhibited a concentration-dependent decrease in microbial populations and biofilm formation. When used together, they displayed a remarkable synergistic effect, greatly augmenting their antibacterial activity. The assessment of food quality demonstrated that these treatments have no negative impact on the sensory characteristics of chicken meat. The impact of the structure on biofilms was observed through the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Confocal Laser Scanning Microscopy (CLSM), revealing disrupted biofilm architectures and decreased cell viability. Crucially, RT-PCR analysis revealed a marked downregulation of quorum sensing (luxS), virulence (hilA), and stress response (rpoS) genes, highlighting the multifaceted antimicrobial mechanism of action. This gene-specific suppression suggests a targeted disruption of bacterial communication and virulence pathways, offering insight into the comprehensive antibiofilm strategy. This provides further insight into the molecular mechanisms that contribute to their antibiofilm effects.
Asunto(s)
Antibacterianos , Biopelículas , Pollos , Cimenos , Flavonoides , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Salmonella typhimurium , Biopelículas/efectos de los fármacos , Cimenos/farmacología , Salmonella typhimurium/efectos de los fármacos , Flavonoides/farmacología , Antibacterianos/farmacología , Animales , Percepción de Quorum/efectos de los fármacos , Carne/microbiología , Monoterpenos/farmacología , Microscopía Electrónica de RastreoRESUMEN
Establishing efficient methods to combat bacterial biofilms is a major concern. Natural compounds, such as essential oils derived from plants, are among the favored and recommended strategies for combatting bacteria and their biofilm. Therefore, we evaluated the antibiofilm properties of peppermint oil as well as the activities by which it kills bacteria generally and particularly their biofilms. Peppermint oil antagonistic activities were investigated against Vibrio parahaemolyticus, Listeria monocytogenes, Pseudomonas aeruginosa, Escherichia coli O157:H7, and Salmonella Typhimurium on four food contact surfaces (stainless steel, rubber, high-density polyethylene, and polyethylene terephthalate). Biofilm formation on each studied surface, hydrophobicity, autoaggregation, metabolic activity, and adenosine triphosphate quantification were evaluated for each bacterium in the presence and absence (control) of peppermint oil. Real-time polymerase chain reaction, confocal laser scanning microscopy, and field-emission scanning electron microscopy were utilized to analyze the effects of peppermint oil treatment on the bacteria and their biofilm. Results showed that peppermint oil (1/2× minimum inhibitory concentration [MIC], MIC, and 2× MIC) substantially lessened biofilm formation, with high bactericidal properties. A minimum of 2.5-log to a maximum of around 5-log reduction was attained, with the highest sensitivity shown by V. parahaemolyticus. Morphological experiments revealed degradation of the biofilm structure, followed by some dead cells with broken membranes. Thus, this study established the possibility of using peppermint oil to combat key foodborne and food spoilage pathogens in the food processing environment.