Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 50(30): 10593-10607, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34278398

RESUMEN

Complexes trans,trans,trans-[Pt(N3)2(OH)(OCOR)(py)2] where py = pyridine and where OCOR = succinate (1); 4-oxo-4-propoxybutanoate (2) and N-methylisatoate (3) have been synthesized by derivation of trans,trans,trans-[Pt(OH)2(N3)2(py)2] (4) and characterised by NMR and EPR spectroscopy, ESI-MS and X-ray crystallography. Irradiation of 1-3 with green (517 nm) light initiated photoreduction to Pt(ii) and release of the axial ligands at a 3-fold faster rate than for 4. TD-DFT calculations showed dissociative transitions at longer wavelengths for 1 compared to 4. Complexes 1 and 2 showed greater photocytotoxicity than 4 when irradiated with 420 nm light (A2780 cell line IC50 values: 2.7 and 3.7 µM) and complex 2 was particularly active towards the cisplatin-resistant cell line A2780cis (IC50 3.7 µM). Unlike 4, complexes 1-3 were phototoxic under green light irradiation (517 nm), with minimal toxicity in the dark. A pKa(H2O) of 5.13 for the free carboxylate group was determined for 1, corresponding to an overall negative charge during biological experiments, which crucially, did not appear to impede cellular accumulation and photocytotoxicity.


Asunto(s)
Neoplasias Ováricas , Línea Celular Tumoral , Femenino , Humanos , Compuestos Organoplatinos
2.
Chem Sci ; 10(37): 8610-8617, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31803436

RESUMEN

A series of trans-di-(N-heterocyclic)imine dihydroxido diazido PtIV complexes of the form trans,trans,trans-[Pt(N3)2(OH)2(L1)(L2)] where L = pyridine, 2-picoline, 3-picoline, 4-picoline, thiazole and 1-methylimidazole have been synthesised and characterised, and their photochemical and photobiological activity evaluated. Notably, complexes 19 (L1 = py, L2 = 3-pic) and 26 (L1 = L2 = 4-pic) were potently phototoxic following irradiation with visible light (420 nm), with IC50 values of 4.0 µM and 2.1 µM respectively (A2780 cancer cell line), demonstrating greater potency than the previously reported complex 1 (L1 = L2 = py; 6.7 µM); whilst also being minimally toxic in the absence of irradiation. Complexes with mixed N-(heterocyclic)imine ligands 19 and 20 (L1 = py, L2 = 4-pic) were particularly photocytotoxic towards cisplatin resistant (A2780cis) cell lines. Complex 18 (L1 = py, L2 = 2-pic) was comparatively less photocytotoxic (IC50 value 14.5 µM) than the other complexes, despite demonstrating the greatest absorbance at the irradiation wavelength and the fastest half-life for loss of the N3 → Pt LMCT transition upon irradiation (λ irr = 463 nm) in aqueous solution. Complex 29 (X1 = X2 = thiazole) although potently phototoxic (2.4 µM), was also toxic towards cells in the absence of irradiation.

3.
Chem Commun (Camb) ; 54(98): 13845-13848, 2018 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-30468213

RESUMEN

l-Tryptophan (Trp), melatonin (MLT) and the Trp-peptide pentagastrin quenched the formation of azidyl radicals generated on irradiation of the anticancer complex trans,trans,trans-[Pt(pyridine)2(N3)2(OH)2] with visible light, giving rise to C3-centred indole radicals which were characterized for Trp and MLT using an EPR spin-trap; indole, together with azidyl and hydroxyl radicals, have potential roles in a multitargeting mechanism of action against resistant cancers.


Asunto(s)
Antineoplásicos/química , Radicales Libres/química , Compuestos Organoplatinos/química , Fármacos Fotosensibilizantes/química , Piridinas/química , Triptófano/química , Radical Hidroxilo/química , Indoles/química , Luz , Melatonina/química , Procesos Fotoquímicos
4.
Chem Sci ; 9(10): 2733-2739, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29732057

RESUMEN

Octahedral platinum(iv) complexes such as trans,trans,trans-[Pt(N3)2(OH)2(pyridine)2] (1) are stable in the dark, but potently cytotoxic to a range of cancer cells when activated by UVA or visible light, and active in vivo. Photoactivation causes the reduction of the complex and leads to the formation of unusual Pt(ii) lesions on DNA. However, radicals are also generated in the excited state resulting from photoactivation (J. S. Butler, J. A. Woods, N. J. Farrer, M. E. Newton and P. J. Sadler, J. Am. Chem. Soc., 2012, 134, 16508-16511). Here we show that once photoactivated, 1 also can interact with peptides, and therefore proteins are potential targets of this candidate drug. High resolution FT-ICR MS studies show that reactions of 1 activated by visible light with two neuropeptides Substance P, RPKPQQFFGLM-NH2 (SubP) and [Lys]3-Bombesin, pEQKLGNQWAVGHLM-NH2 (K3-Bom) give rise to unexpected products, in the form of both oxidised and platinated peptides. Further MS/MS analysis using electron-capture dissociation (ECD) dissociation pathways (enabling retention of the Pt complex during fragmentation), and EPR experiments using the spin-trap DEPMPO, show that the products generated during the photoactivation of 1 depend on the amino acid composition of the peptide. This work reveals the multi-targeting nature of excited state platinum anticancer complexes. Not only can they target DNA, but also peptides (and proteins) by sequence dependent platination and radical mechanisms.

5.
Dalton Trans ; 47(31): 10553-10560, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-29480314

RESUMEN

We report our investigations into the first examples of copper-free 1,3-dipolar cycloaddition (click) reactions of electrophiles with a PtIV azido complex. The Pt-IV azido complex trans, trans, trans-[PtIV(py)2(N3)2(OH)2] (1) was reactive towards dimethyl acetylenedicarboxylate (DMAD) (2), diethyl acetylenedicarboxylate DEACD (3), N-[(1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8-diamino-3,6-dioxaoctane (BCN) (11) and dibenzocyclooctyne-amine (DBCO) (12) resulting in formation of the corresponding mono (a) and bis-substituted (b) complexes. Complexes of 2 undergo further reactions between the Pt centre and the carbonyl group to form 2a' and 2b'. This is not seen for the products of the corresponding PtII azido complex trans-[Pt(py)2(N3)2] with acetylene 2. Novel complexes 2a', 2b', 11a and 11b have been characterised by multinuclear NMR, IR and UV-vis spectroscopy and ESI-MS. These reactions represent new synthetic routes to novel Pt(iv) complexes.

6.
Drug Discov Today ; 23(1): 26-48, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28987289

RESUMEN

Here, we provide an in-depth literature and experience-based review of nonclinical models and data used to support orphan medicinal product designations (OMPDs) in rare neurodegenerative conditions. The Committee for Orphan Medicinal Products (COMP) of the European Medicines Agency updates its assessment processes based on scientific progress and aims to provide transparent criteria required in support of OMPDs. Thus, we also provide an updated analysis of existing nonclinical models in selected conditions and identify key features of nonclinical studies that are crucial for the support of OMPDs. This could not only inform future drug development in rare neurological conditions, but also indicate areas where the use of nonclinical models can be made more efficient.


Asunto(s)
Enfermedades del Sistema Nervioso , Producción de Medicamentos sin Interés Comercial , Enfermedades Raras , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Humanos
7.
Inorg Chem ; 55(12): 5983-92, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27257848

RESUMEN

We report a detailed study of a promising photoactivatable metal-based anticancer prodrug candidate, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (C1; py = pyridine), using vibrational spectroscopic techniques. Attenuated total reflection Fourier transform infrared (ATR-FTIR), Raman, and synchrotron radiation far-IR (SR-FIR) spectroscopies were applied to obtain highly resolved ligand and Pt-ligand vibrations for C1 and its precursors (trans-[Pt(N3)2(py)2] (C2) and trans-[PtCl2(py)2] (C3)). Distinct IR- and Raman-active vibrational modes were assigned with the aid of density functional theory calculations, and trends in the frequency shifts as a function of changing Pt coordination environment were determined and detailed for the first time. The data provide the ligand and Pt-ligand (azide, hydroxide, pyridine) vibrational signatures for C1 in the mid- and far-IR region, which will provide a basis for the better understanding of the interaction of C1 with biomolecules.


Asunto(s)
Antineoplásicos/química , Compuestos Organoplatinos/química , Profármacos/química , Análisis Espectral/métodos
8.
Chemistry ; 21(50): 18474-86, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26662220

RESUMEN

A photoactivatable platinum(IV) complex, trans,trans,trans-[Pt(N3 )2 (OH)(succ)(py)2 ] (succ=succinylate, py=pyridine), has been conjugated to guanidinoneomycin to study the effect of this guanidinum-rich compound on the photoactivation, intracellular accumulation and phototoxicity of the pro-drug. Surprisingly, trifluoroacetic acid treatment causes the replacement of an azido ligand and the axial hydroxide ligand by trifluoroacetate, as shown by NMR spectroscopy, MS and X-ray crystallography. Photoactivation of the platinum-guanidinoneomycin conjugate in the presence of 5'-guanosine monophosphate (5'-GMP) led to the formation of trans-[Pt(N3 )(py)2 (5'-GMP)](+) , as does the parent platinum(IV) complex. Binding of the platinum(II) photoproduct {PtN3 (py)2 }(+) to guanine nucleobases in a short single-stranded oligonucleotide was also observed. Finally, cellular uptake studies showed that guanidinoneomycin conjugation improved the intracellular accumulation of the platinum(IV) pro-drug in two cancer cell lines, particularly in SK-MEL-28 cells. Notably, the higher phototoxicity of the conjugate in SK-MEL-28 cells than in DU-145 cells suggests a degree of selectivity towards the malignant melanoma cell line.


Asunto(s)
Antineoplásicos/química , Guanidina/análogos & derivados , Guanidina/química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , ARN/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Ligandos , ARN/metabolismo
10.
Sci Prog ; 97(Pt 1): 20-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24800467

RESUMEN

Platinum-based chemotherapeutic drugs such as cisplatin, carboplatin and oxaliplatin are widely applied for the treatment of various types of tumours. Over the last few decades, a large variety of Pt(II) and Pt(IV) complexes have been developed to improve the applicability in a wider spectrum of cancers, increase their therapeutic window and reduce the dose-limiting side effects. Photodynamic therapy (PDT), which is the administration of a photosensitiser followed by visible light activation, is a promising route to avoid damage to healthy cells and the surrounding tissue. Transition metal complexes as photochemotherapeutic agents are an attractive option for further development in the field of photoactivated chemotherapy (PACT). These complexes exhibit different numbers and types of excited states which are easily accessible upon light irradiation, subsequently giving rise to the formation of various photoproducts that can enable a distinct mode of action. Platinum-diazido complexes are promising candidates for PACT due to the low cytotoxicity when irradiated with visible light. This review summarises the mode of action of current platinum anticancer drugs with cisplatin as a lead example and the development of non-conventional Pt(II) complexes. Background information regarding PDT the photophysical and photochemical properties of metal complexes is provided, as well as notable examples of photoactivated metal complexes with biological activity. Particular emphasis is placed on recent developments on platinum photoactivated drugs.


Asunto(s)
Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Compuestos Organoplatinos/química , Fármacos Fotosensibilizantes/química , Amantadina/análogos & derivados , Amantadina/síntesis química , Amantadina/química , Amantadina/uso terapéutico , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Cisplatino/síntesis química , Cisplatino/química , Cisplatino/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Luz , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA