Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 9(91): eadi2848, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38277466

RESUMEN

Psoriasis vulgaris and other chronic inflammatory diseases improve markedly with therapeutic blockade of interleukin-23 (IL-23) signaling, but the genetic mechanisms underlying clinical responses remain poorly understood. Using single-cell transcriptomics, we profiled immune cells isolated from lesional psoriatic skin before and during IL-23 blockade. In clinically responsive patients, a psoriatic transcriptional signature in skin-resident memory T cells was strongly attenuated. In contrast, poorly responsive patients were distinguished by persistent activation of IL-17-producing T (T17) cells, a mechanism distinct from alternative cytokine signaling or resistance isolated to epidermal keratinocytes. Even in IL-23 blockade-responsive patients, we detected a recurring set of recalcitrant, disease-specific transcriptional abnormalities. This irreversible immunological state may necessitate ongoing IL-23 inhibition. Spatial transcriptomic analyses also suggested that successful IL-23 blockade requires dampening of >90% of IL-17-induced response in lymphocyte-adjacent keratinocytes, an unexpectedly high threshold. Collectively, our data establish a patient-level paradigm for dissecting responses to immunomodulatory treatments.


Asunto(s)
Interleucina-17 , Psoriasis , Humanos , Interleucina-23 , Piel , Psoriasis/tratamiento farmacológico , Queratinocitos
2.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181739

RESUMEN

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente Tumoral
3.
Genome Biol ; 24(1): 273, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037084

RESUMEN

Spatial transcriptomic technologies, such as the Visium platform, measure gene expression in different regions of tissues. Here, we describe new software, STmut, to visualize somatic point mutations, allelic imbalance, and copy number alterations in Visium data. STmut is tested on fresh-frozen Visium data, formalin-fixed paraffin-embedded (FFPE) Visium data, and tumors with and without matching DNA sequencing data. Copy number is inferred on all conditions, but the chemistry of the FFPE platform does not permit analyses of single nucleotide variants. Taken together, we propose solutions to add the genetic dimension to spatial transcriptomic data and describe the limitations of different datatypes.


Asunto(s)
Formaldehído , Neoplasias , Humanos , Transcriptoma , Adhesión en Parafina , Neoplasias/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento
4.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37904969

RESUMEN

Acral melanoma is an aggressive type of melanoma with unknown origins, arising on the sole, palm, or nail apparatus. It is the most common type of melanoma in individuals with dark skin and is notoriously challenging to treat. Our study examined exome sequencing data from 139 tissue samples, spanning different progression stages, collected from 37 patients. We found that 78.4% of the melanomas displayed one or more clustered copy number transitions with focal amplifications, recurring predominantly on chromosomes 5, 11, 12, and 22. These genomic "hailstorms" were typically shared across all progression stages within individual patients. Genetic alterations known to activate TERT also arose early. By contrast, mutations in the MAP-kinase pathway appeared later during progression, often leading to different tumor areas harboring non-overlapping driver mutations. We conclude that the evolutionary trajectories of acral melanomas substantially diverge from those of melanomas on sun-exposed skin, where MAP-kinase pathway activation initiates the neoplastic cascade followed by immortalization later. The punctuated formation of hailstorms, paired with early TERT activation, suggests a unique mutational mechanism underlying the origins of acral melanoma. Our findings highlight an essential role for telomerase, likely in re-stabilizing tumor genomes after hailstorms have initiated the tumors. The marked genetic heterogeneity, in particular of MAP-kinase pathway drivers, may partly explain the limited success of targeted and other therapies in treating this melanoma subtype.

5.
Cancer Discov ; 13(6): 1294-1296, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37264823

RESUMEN

SUMMARY: Traditionally, omic studies have prioritized the number of patients over the number of tumors per patient, but in a reversal of this study design, Spain and colleagues performed the largest intrapatient analysis of melanoma to date. Their work reveals mechanisms of treatment resistance, patterns of metastatic dissemination, and new insights into the evolutionary trajectories of melanoma. See related article by Spain et al., p. 1364 (1).


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Melanoma/genética , Melanoma/patología , Genómica , Evolución Biológica
6.
Genome Med ; 14(1): 65, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35706047

RESUMEN

BACKGROUND: Acral and mucosal melanomas are aggressive subtypes of melanoma, which have a significantly lower burden of somatic mutations than cutaneous melanomas, but more frequent copy number variations, focused gene amplifications, and structural alterations. The landscapes of their genomic alterations remain to be fully characterized. METHODS: We compiled sequencing data of 240 human acral and mucosal melanoma samples from 11 previously published studies and applied a uniform pipeline to call tumor cell content, ploidy, somatic and germline mutations, as well as CNVs, LOH, and SVs. We identified genes that are significantly mutated or recurrently affected by CNVs and implicated in oncogenesis. We further examined the difference in the frequency of recurrent pathogenic alterations between the two melanoma subtypes, correlation between pathogenic alterations, and their association with clinical features. RESULTS: We nominated PTPRJ, mutated and homozygously deleted in 3.8% (9/240) and 0.8% (2/240) of samples, respectively, as a probable tumor suppressor gene, and FER and SKP2, amplified in 3.8% and 11.7% of samples, respectively, as probable oncogenes. We further identified a long tail of infrequent pathogenic alterations, involving genes such as CIC and LZTR1. Pathogenic germline mutations were observed on MITF, PTEN, ATM, and PRKN. We found BRAF V600E mutations in acral melanomas with fewer structural variations, suggesting that they are distinct and related to cutaneous melanomas. Amplifications of PAK1 and GAB2 were more commonly observed in acral melanomas, whereas SF3B1 R625 codon mutations were unique to mucosal melanomas (12.9%). Amplifications at 11q13-14 were frequently accompanied by fusion to a region on chromosome 6q12, revealing a recurrent novel structural rearrangement whose role remains to be elucidated. CONCLUSIONS: Our meta-analysis expands the catalog of driver mutations in acral and mucosal melanomas, sheds new light on their pathogenesis and broadens the catalog of therapeutic targets for these difficult-to-treat cancers.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Melanoma/patología , Mutación , Neoplasias Cutáneas/patología , Factores de Transcripción/genética , Melanoma Cutáneo Maligno
7.
Elife ; 102021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34812139

RESUMEN

Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.


Lots of people have small dark patches on their skin known as moles. Most moles form when individual cells known as melanocytes in the skin acquire a specific genetic mutation in a gene called BRAF. This mutation causes the cells to divide rapidly to form the mole. After a while, most moles stop growing and remain harmless for the rest of a person's life. Melanoma is a type of skin cancer that develops from damaged melanocytes. The same mutation in BRAF that is found in moles is also present in half of all cases of melanoma. Unlike in moles, the melanoma-causing mutation makes the melanocytes divide rapidly to form a tumor that keeps on growing indefinitely. It remains unclear why the same genetic mutation in the BRAF gene has such different consequences in moles and melanomas. To address this question, McNeal et al. used genetic approaches to study melanocytes from moles and melanomas. The experiments identified some molecules known as microRNAs that are present at higher levels in moles than in melanomas. Increasing the levels of two of these microRNAs in melanocytes from human skin stopped the cells from growing and dividing by inhibiting a gene called AURKB. This suggested that these microRNAs are responsible for halting the growth of moles. Introducing the mutated form of BRAF into melanocytes also stopped cells from growing and dividing by inhibiting AURKB. However, changing the environment surrounding the cells reversed this effect and allowed the melanocytes to resume dividing. In this way the mutated form of BRAF acts like a switch that allows melanocytes in skin cancers to start growing again under certain conditions. Further experiments found that a drug called barasertib is able to inhibit the growth of melanoma cells with the mutant form of BRAF. Future work will investigate whether it is possible to use this drug and other tools to stop skin cancer tumors from growing, and possibly even prevent skin tumors from forming in the first place.


Asunto(s)
Aurora Quinasa B/genética , Melanocitos/fisiología , MicroARNs/metabolismo , Mitosis/genética , Proteínas Proto-Oncogénicas B-raf/genética , Aurora Quinasa B/metabolismo , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal
8.
NPJ Genom Med ; 6(1): 61, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272401

RESUMEN

Cutaneous squamous cell carcinoma is a form of skin cancer originating from keratinocytes in the skin. It is the second most common type of cancer and is responsible for an estimated 8000 deaths per year in the United States. Compared to other cancer subtypes with similar incidences and death tolls, our understanding of the somatic mutations driving cutaneous squamous cell carcinoma is limited. The main challenge is that these tumors have high mutation burdens, primarily a consequence of UV-radiation-induced DNA damage from sunlight, making it difficult to distinguish driver mutations from passenger mutations. We overcame this challenge by performing a meta-analysis of publicly available sequencing data covering 105 tumors from 10 different studies. Moreover, we eliminated tumors with issues, such as low neoplastic cell content, and from the tumors that passed quality control, we utilized multiple strategies to reveal genes under selection. In total, we nominated 30 cancer genes. Among the more novel genes, mutations frequently affected EP300, PBRM1, USP28, and CHUK. Collectively, mutations in the NOTCH and p53 pathways were ubiquitous, and to a lesser extent, mutations affected genes in the Hippo pathway, genes in the Ras/MAPK/PI3K pathway, genes critical for cell-cycle checkpoint control, and genes encoding chromatin remodeling factors. Taken together, our study provides a catalog of driver genes in cutaneous squamous cell carcinoma, offering points of therapeutic intervention and insights into the biology of cutaneous squamous cell carcinoma.

9.
Life Sci Alliance ; 4(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34210801

RESUMEN

BRAF-mutant melanomas are more likely than NRAS-mutant melanomas to arise in anatomical locations protected from chronic sun damage. We hypothesized that this discrepancy in tumor location is a consequence of the differential sensitivity of BRAF and NRAS-mutant melanocytes to ultraviolet light (UV)-mediated carcinogenesis. We tested this hypothesis by comparing the mutagenic consequences of a single neonatal, ultraviolet-AI (UVA; 340-400 nm) or ultraviolet-B (UVB; 280-390 nm) exposure in mouse models heterozygous for mutant Braf or homozygous for mutant Nras Tumor onset was accelerated by UVB, but not UVA, and the resulting melanomas contained recurrent mutations affecting the RING domain of MAP3K1 and Actin-binding domain of Filamin A. Melanomas from UVB-irradiated, Braf-mutant mice averaged twice as many single-nucleotide variants and five times as many dipyrimidine variants than tumors from similarly irradiated Nras-mutant mice. A mutational signature discovered in UVB-accelerated tumors mirrored COSMIC signatures associated with human skin cancer and was more prominent in Braf- than Nras-mutant murine melanomas. These data show that a single UVB exposure yields a greater burden of mutations in murine tumors driven by oncogenic Braf.


Asunto(s)
Melanoma/etiología , Proteínas de Unión al GTP Monoméricas/genética , Mutagénesis/efectos de la radiación , Mutación/efectos de la radiación , Proteínas Proto-Oncogénicas B-raf/genética , Rayos Ultravioleta/efectos adversos , Animales , Biomarcadores de Tumor , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Melanoma/metabolismo , Melanoma/patología , Ratones
10.
JAMA Dermatol ; 157(7): 769-770, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978680
12.
Nature ; 586(7830): 600-605, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33029006

RESUMEN

Every cell in the human body has a unique set of somatic mutations, but it remains difficult to comprehensively genotype an individual cell1. Here we describe ways to overcome this obstacle in the context of normal human skin, thus offering a glimpse into the genomic landscapes of individual melanocytes from human skin. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, melanocytes from chronically sun-exposed skin (for example, the face) had a lower mutation burden than melanocytes from intermittently sun-exposed skin (for example, the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be used to measure cumulative sun damage and risk of skin cancer. Moreover, melanocytes from healthy skin commonly contained pathogenic mutations, although these mutations tended to be weakly oncogenic, probably explaining why they did not give rise to discernible lesions. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells that are invisible to the naked eye. Overall, our results uncover the genomic landscapes of individual melanocytes, providing key insights into the causes and origins of melanoma.


Asunto(s)
Genoma Humano/genética , Genómica , Salud , Melanocitos/citología , Melanoma/genética , Análisis de la Célula Individual , Piel/citología , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/patología , Mutación , Piel/patología , Flujo de Trabajo
13.
Nat Rev Cancer ; 20(6): 355, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382093

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
J Invest Dermatol ; 140(1): 164-173.e7, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580842

RESUMEN

The use of microRNAs as biomarkers has been proposed for many diseases, including the diagnosis of melanoma. Although hundreds of microRNAs have been identified as differentially expressed in melanomas as compared to benign melanocytic lesions, a limited consensus has been achieved across studies, constraining the effective use of these potentially useful markers. In this study, we applied a machine learning-based pipeline to a dataset consisting of genetic features, clinical features, and next-generation microRNA sequencing from micro-dissected formalin-fixed paraffin embedded melanomas and their adjacent benign precursor nevi. We identified patient age and tumor cellularity as variables that frequently confound the measured expression of potentially diagnostic microRNAs. By employing the ratios of microRNAs that were either enriched or depleted in melanoma compared to the nevi as a normalization strategy, we developed a model that classified all the available published cohorts with an area under the receiver operating characteristic curve of 0.98. External validation on an independent cohort classified lesions with 81% sensitivity and 88% specificity and was uninfluenced by the tumor content of the sample or patient age.


Asunto(s)
Biomarcadores de Tumor/genética , Melanocitos/fisiología , Melanoma/diagnóstico , MicroARNs/genética , Nevo/diagnóstico , Neoplasias Cutáneas/diagnóstico , Conjuntos de Datos como Asunto , Diagnóstico Diferencial , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Aprendizaje Automático , Pronóstico , Curva ROC , Sensibilidad y Especificidad , Análisis de Secuencia de ARN
15.
J Invest Dermatol ; 140(2): 291-297, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31623932

RESUMEN

To date, over 1000 melanocytic neoplasms, spanning all stages of tumorigenesis, have been sequenced, offering detailed views into their -omic landscapes. This has coincided with advances in genetic engineering technologies that allow molecular biologists to edit the human genome with extreme precision and new mouse models to simulate disease progression. In this review, we describe how these technologies are being harnessed to provide insights into the evolution of melanoma at an unprecedented resolution, revealing that prior models of melanoma evolution, in which pathways are turned 'on' or 'off' in a binary fashion during the run-up to melanoma, are oversimplified.


Asunto(s)
Carcinogénesis/genética , Sistema de Señalización de MAP Quinasas/genética , Melanocitos/patología , Melanoma/genética , Neoplasias Cutáneas/genética , Animales , Carcinogénesis/patología , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Ingeniería Genética , Humanos , Melanoma/patología , Ratones , Ratones Transgénicos , Mutación , Proteína de Retinoblastoma/metabolismo , Neoplasias Cutáneas/patología
16.
Cell Rep ; 29(3): 573-588.e7, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618628

RESUMEN

BRAF fusions are detected in numerous neoplasms, but their clinical management remains unresolved. We identified six melanoma lines harboring BRAF fusions representative of the clinical cases reported in the literature. Their unexpected heterogeneous responses to RAF and MEK inhibitors could be categorized upon specific features of the fusion kinases. Higher expression level correlated with resistance, and fusion partners containing a dimerization domain promoted paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway and hyperproliferation in response to first- and second-generation RAF inhibitors. By contrast, next-generation αC-IN/DFG-OUT RAF inhibitors blunted paradoxical activation across all lines and had their therapeutic efficacy further increased in vitro and in vivo by combination with MEK inhibitors, opening perspectives in the clinical management of tumors harboring BRAF fusions.


Asunto(s)
Resistencia a Antineoplásicos/genética , Melanoma/patología , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Dimerización , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Melanoma/genética , Ratones , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Vemurafenib/farmacología , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Nat Genet ; 51(7): 1123-1130, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31253977

RESUMEN

Uveal melanoma is a clinically distinct and particularly lethal subtype of melanoma originating from melanocytes in the eye. Here, we performed multi-region DNA sequencing of primary uveal melanomas and their matched metastases from 35 patients. We observed previously unknown driver mutations and established the order in which these and known driver mutations undergo selection. Metastases had genomic alterations distinct from their primary tumors; metastatic dissemination sometimes occurred early during the development of the primary tumor. Our study offers new insights into the genetics and evolution of this melanoma subtype, providing potential biomarkers for progression and therapy.


Asunto(s)
Biomarcadores de Tumor/genética , Evolución Molecular , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Neoplasias Hepáticas/secundario , Melanoma/patología , Mutación , Neoplasias de la Úvea/patología , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Melanoma/genética , Filogenia , Estudios Retrospectivos , Neoplasias de la Úvea/genética
18.
J Natl Cancer Inst ; 111(10): 1068-1077, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657954

RESUMEN

BACKGROUND: Acral melanoma is a rare type of melanoma that affects world populations irrespective of skin color and has worse survival than other cutaneous melanomas. It has relatively few single nucleotide mutations without the UV signature of cutaneous melanomas, but instead has a genetic landscape characterized by structural rearrangements and amplifications. BRAF mutations are less common than in other cutaneous melanomas, and knowledge about alternative therapeutic targets is incomplete. METHODS: To identify alternative therapeutic targets, we performed targeted deep-sequencing on 122 acral melanomas. We confirmed the loss of the tumor suppressors p16 and NF1 by immunohistochemistry in select cases. RESULTS: In addition to BRAF (21.3%), NRAS (27.9%), and KIT (11.5%) mutations, we identified a broad array of MAPK pathway activating alterations, including fusions of BRAF (2.5%), NTRK3 (2.5%), ALK (0.8%), and PRKCA (0.8%), which can be targeted by available inhibitors. Inactivation of NF1 occurred in 18 cases (14.8%). Inactivation of the NF1 cooperating factor SPRED1 occurred in eight cases (6.6%) as an alternative mechanism of disrupting the negative regulation of RAS. Amplifications recurrently affected narrow loci containing PAK1 and GAB2 (n = 27, 22.1%), CDK4 (n = 27, 22.1%), CCND1 (n = 24, 19.7%), EP300 (n = 20, 16.4%), YAP1 (n = 15, 12.3%), MDM2 (n = 13, 10.7%), and TERT (n = 13, 10.7%) providing additional and possibly complementary therapeutic targets. Acral melanomas with BRAFV600E mutations harbored fewer genomic amplifications and were more common in patients with European ancestry. CONCLUSION: Our findings support a new, molecularly based subclassification of acral melanoma with potential therapeutic implications: BRAFV600E mutant acral melanomas with characteristics similar to nonacral melanomas that could benefit from BRAF inhibitor therapy, and non-BRAFV600E mutant acral melanomas. Acral melanomas without BRAFV600E mutations harbor a broad array of therapeutically relevant alterations. Expanded molecular profiling would increase the detection of potentially targetable alterations for this subtype of acral melanoma.


Asunto(s)
Predisposición Genética a la Enfermedad , Genómica , Melanoma/genética , Neoplasias Cutáneas/genética , Biomarcadores de Tumor , Biología Computacional , Curaduría de Datos , Bases de Datos Factuales , Estudios de Asociación Genética , Genómica/métodos , Humanos , Inmunohistoquímica , Melanoma/diagnóstico , Melanoma/metabolismo , Modelos Biológicos , Terapia Molecular Dirigida , Mutación , Estadificación de Neoplasias , Transducción de Señal , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/metabolismo , Melanoma Cutáneo Maligno
19.
J Pathol ; 248(2): 164-178, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30690729

RESUMEN

Combined hepatocellular-cholangiocarcinomas (CHC) are mixed tumours with both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) components. CHC prognosis is similar to intrahepatic CC (ICC) and worse than HCC; staging and treatment generally follow ICC algorithms. However, the molecular biology of CHC remains poorly characterised. We performed capture-based next-generation sequencing of 20 CHC and, for comparison, 10 ICC arising in cirrhosis. Intratumour heterogeneity was assessed by separately sequencing the HCC and CC components of nine CHC. CHC demonstrated molecular profiles similar to HCC, even in the CC component. CHC harboured recurrent alterations in TERT (80%), TP53 (80%), cell cycle genes (40%; CCND1, CCNE1, CDKN2A), receptor tyrosine kinase/Ras/PI3-kinase pathway genes (55%; MET, ERBB2, KRAS, PTEN), chromatin regulators (20%; ARID1A, ARID2) and Wnt pathway genes (20%; CTNNB1, AXIN, APC). No CHC had alterations in IDH1, IDH2, FGFR2 or BAP1, genes typically mutated in ICC. TERT promoter mutations were consistently identified in both HCC and CC components, supporting TERT alteration as an early event in CHC evolution. TP53 mutations were present in both components in slightly over half the TP53-altered cases. By contrast, focal amplifications of CCND1, MET and ERRB2, as well as Wnt pathway alterations, were most often exclusive to one component, suggesting that these are late events in CHC evolution. ICC in cirrhosis demonstrated alterations similar to ICC in non-cirrhotic liver, including in IDH1 or IDH2 (30%), CDKN2A (40%), FGFR2 (20%), PBRM1 (20%), ARID1A (10%) and BAP1 (10%). TERT promoter and TP53 mutation were present in only one ICC each. Our data demonstrate that CHC genetics are distinct from ICC (even in cirrhosis) and similar to HCC, which has diagnostic utility and implications for treatment. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Perfilación de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Complejas y Mixtas/genética , Transcriptoma , Adulto , Anciano , Carcinoma Hepatocelular/patología , Colangiocarcinoma/patología , Femenino , Dosificación de Gen , Reordenamiento Génico , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Mutación , Neoplasias Complejas y Mixtas/patología
20.
Cancer Cell ; 34(1): 45-55.e4, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29990500

RESUMEN

We elucidated genomic and transcriptomic changes that accompany the evolution of melanoma from pre-malignant lesions by sequencing DNA and RNA from primary melanomas and their adjacent precursors, as well as matched primary tumors and regional metastases. In total, we analyzed 230 histopathologically distinct areas of melanocytic neoplasia from 82 patients. Somatic alterations sequentially induced mitogen-activated protein kinase (MAPK) pathway activation, upregulation of telomerase, modulation of the chromatin landscape, G1/S checkpoint override, ramp-up of MAPK signaling, disruption of the p53 pathway, and activation of the PI3K pathway; no mutations were specifically associated with metastatic progression, as these pathways were perturbed during the evolution of primary melanomas. UV radiation-induced point mutations steadily increased until melanoma invasion, at which point copy-number alterations also became prevalent.


Asunto(s)
Biomarcadores de Tumor/genética , Transformación Celular Neoplásica/genética , Melanoma/genética , Transducción de Señal/genética , Neoplasias Cutáneas/genética , Transcriptoma , Biomarcadores de Tumor/metabolismo , Movimiento Celular/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/efectos de la radiación , Ensamble y Desensamble de Cromatina/genética , Biología Computacional , Variaciones en el Número de Copia de ADN , Bases de Datos Genéticas , Progresión de la Enfermedad , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Dosificación de Gen , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Sistema de Señalización de MAP Quinasas/genética , Melanoma/metabolismo , Melanoma/secundario , Mutación , Invasividad Neoplásica , Transducción de Señal/efectos de la radiación , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Transcriptoma/efectos de la radiación , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA