RESUMEN
Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.
Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Linfocitos T Reguladores , Femenino , Masculino , Humanos , Grasa Intraabdominal , Citocinas , Inflamación , GlucosaRESUMEN
CD4+ T cells play a central role in the adaptive immune response through their capacity to activate, support and control other immune cells. Although these cells have become the focus of intense research, a comprehensive understanding of the underlying regulatory networks that orchestrate CD4+ T cell function and activation is still incomplete. Here, we analyzed a large transcriptomic dataset consisting of 48 different human CD4+ T cell conditions. By performing reverse network engineering, we identified six common denominators of CD4+ T cell functionality (CREB1, E2F3, AHR, STAT1, NFAT5 and NFATC3). Moreover, we also analyzed condition-specific genes which led us to the identification of the transcription factor MEOX1 in Treg cells. Expression of MEOX1 was comparable to FOXP3 in Treg cells and can be upregulated by IL-2. Epigenetic analyses revealed a permissive epigenetic landscape for MEOX1 solely in Treg cells. Knockdown of MEOX1 in Treg cells revealed a profound impact on downstream gene expression programs and Treg cell suppressive capacity. These findings in the context of CD4+ T cells contribute to a better understanding of the transcriptional networks and biological mechanisms controlling CD4+ T cell functionality, which opens new avenues for future therapeutic strategies.
Asunto(s)
Regulación de la Expresión Génica , Linfocitos T Reguladores , Humanos , Redes Reguladoras de Genes , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genéticaRESUMEN
The COVID-19 pandemic has shown the potentially devastating impact of novel respiratory infections worldwide. Insightful data obtained in the last years have shed light on the pathophysiology of SARS-CoV-2 infection and the role of the inflammatory response in driving both the resolution of the disease and uncontrolled deleterious inflammatory status in severe cases. In this mini-review, we cover some important aspects of the role of T cells in COVID-19 with a special focus on the local response in the lung. We focus on the reported T cell phenotypes in mild, moderate, and severe COVID-19, focusing on lung inflammation and on both the protective and damaging roles of the T cell response, also highlighting the open questions in the field.
Asunto(s)
COVID-19 , Inflamación , Pulmón , Linfocitos T , Humanos , COVID-19/inmunología , Pulmón/inmunología , Pandemias , SARS-CoV-2 , Linfocitos T/inmunología , Inflamación/inmunologíaRESUMEN
The gene encoding for a novel cold-adapted enzyme from family II of bacterial classification (GDSL family) was cloned from the genomic DNA of Photobacterium sp. strain J15 in an Escherichia coli system, yielding a recombinant 36 kDa J15 GDSL esterase which was purified in two steps with a final yield and purification of 38.6 and 15.3 respectively. Characterization of the biochemical properties showed the J15 GDSL esterase had maximum activity at 20 °C and pH 8.0, was stable at 10 °C for 3 h and retained 50 % of its activity after a 6 h incubation at 10 °C. The enzyme was activated by Tween-20, -60 and Triton-X100 and inhibited by 1 mM Sodium dodecyl sulphate (SDS), while ß-mercaptoethanol and Dithiothreitol (DTT) enhanced activity by 4.3 and 5.4 fold respectively. These results showed the J15 GDSL esterase was a novel cold-adapted enzyme from family II of lipolytic enzymes. A structural model constructed using autotransporter EstA from Pseudomonas aeruginosa as a template revealed the presence of a typical catalytic triad consisting of a serine, aspartate, and histidine which was verified with site directed mutagenesis on active serine.