Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Front Oncol ; 14: 1383939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077471

RESUMEN

Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.

2.
Cells ; 13(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38994996

RESUMEN

Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.


Asunto(s)
Microbioma Gastrointestinal , Osteoporosis , Resveratrol , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Osteoporosis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Disbiosis
3.
Phytother Res ; 38(7): 3525-3551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38699926

RESUMEN

Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.


Asunto(s)
Apoptosis , Autofagia , Neoplasias Colorrectales , Curcumina , Curcumina/farmacología , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Transducción de Señal/efectos de los fármacos , Curcuma/química , Antineoplásicos Fitogénicos/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38801466

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists have garnered significant attention for their therapeutic potential in addressing the interconnected health challenges of diabetes, obesity, and cancer. The role of GLP-1R in type 2 diabetes mellitus (T2DM) is highlighted, emphasizing its pivotal contribution to glucose homeostasis, promoting ß-cell proliferation, and facilitating insulin release. GLP-1R agonists have effectively managed obesity by reducing hunger, moderating food intake, and regulating body weight. Beyond diabetes and obesity, GLP-1R agonists exhibit a multifaceted impact on cancer progression across various malignancies. The mechanisms underlying these effects involve the modulation of signaling pathways associated with cell growth, survival, and metabolism. However, the current literature reveals a lack of in vivo studies on specific GLP-1R agonists such as semaglutide, necessitating further research to elucidate its precise mechanisms and effects, particularly in cancer. While other GLP-1R agonists have shown promising outcomes in mitigating cancer progression, the association between some GLP-1R agonists and an increased risk of cancer remains a topic requiring more profound investigation. This calls for more extensive research to unravel the intricate relationships between the GLP-1R agonist and different cancers, providing valuable insights for clinicians and researchers alike.

5.
Nutrients ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474838

RESUMEN

Breast cancer (BC) is currently one of the most common cancers in women worldwide with a rising tendency. Epigenetics, generally inherited variations in gene expression that occur independently of changes in DNA sequence, and their disruption could be one of the main causes of BC due to inflammatory processes often associated with different lifestyle habits. In particular, hormone therapies are often indicated for hormone-positive BC, which accounts for more than 50-80% of all BC subtypes. Although the cure rate in the early stage is more than 70%, serious negative side effects such as secondary osteoporosis (OP) due to induced estrogen deficiency and chemotherapy are increasingly reported. Approaches to the management of secondary OP in BC patients comprise adjunctive therapy with bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), and cortisone, which partially reduce bone resorption and musculoskeletal pain but which are not capable of stimulating the necessary intrinsic bone regeneration. Therefore, there is a great therapeutic need for novel multitarget treatment strategies for BC which hold back the risk of secondary OP. In this review, resveratrol, a multitargeting polyphenol that has been discussed as a phytoestrogen with anti-inflammatory and anti-tumor effects at the epigenetic level, is presented as a potential adjunct to both support BC therapy and prevent osteoporotic risks by positively promoting intrinsic regeneration. In this context, resveratrol is also known for its unique role as an epigenetic modifier in the regulation of essential signaling processes-both due to its catabolic effect on BC and its anabolic effect on bone tissue.


Asunto(s)
Neoplasias de la Mama , Osteoporosis , Femenino , Humanos , Resveratrol/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Osteoporosis/prevención & control , Antiinflamatorios no Esteroideos/uso terapéutico , Hormonas/uso terapéutico
6.
Front Immunol ; 15: 1363947, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500879

RESUMEN

Introduction: Osteoarthritis (OA) is associated with excessive cartilage degradation, inflammation, and decreased autophagy. Insufficient efficacy of conventional monotherapies and poor tissue regeneration due to side effects are just some of the unresolved issues. Our previous research has shown that Calebin A (CA), a component of turmeric (Curcuma longa), has pronounced anti-inflammatory and anti-oxidative effects by modulating various cell signaling pathways. Whether CA protects chondrocytes from degradation and apoptosis in the OA environment (EN), particularly via the autophagy signaling pathway, is however completely unclear. Methods: To study the anti-degradative and anti-apoptotic effects of CA in an inflamed joint, an in vitro model of OA-EN was created and treated with antisense oligonucleotides targeting NF-κB (ASO-NF-κB), and IκB kinase (IKK) inhibitor (BMS-345541) or the autophagy inhibitor 3-methyladenine (3-MA) and/or CA to affect chondrocyte proliferation, degradation, apoptosis, and autophagy. The mechanisms underlying the CA effects were investigated by MTT assays, immunofluorescence, transmission electron microscopy, and Western blot analysis in a 3D-OA high-density culture model. Results: In contrast to OA-EN or TNF-α-EN, a treatment with CA protects chondrocytes from stress-induced defects by inhibiting apoptosis, matrix degradation, and signaling pathways associated with inflammation (NF-κB, MMP9) or autophagy-repression (mTOR/PI3K/Akt), while promoting the expression of matrix compounds (collagen II, cartilage specific proteoglycans), transcription factor Sox9, and autophagy-associated proteins (Beclin-1, LC3). However, the preventive properties of CA in OA-EN could be partially abrogated by the autophagy inhibitor 3-MA. Discussion: The present results reveal for the first time that CA is able to ameliorate the progression of OA by modulating autophagy pathway, inhibiting inflammation and apoptosis in chondrocytes, suggesting that CA may be a novel therapeutic compound for OA.


Asunto(s)
FN-kappa B , Osteoartritis , Humanos , Fosfatidilinositol 3-Quinasas , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Inflamación/metabolismo , Autofagia
7.
Cell Mol Life Sci ; 81(1): 78, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334807

RESUMEN

Hematological malignancies (HM) represent a subset of neoplasms affecting the blood, bone marrow, and lymphatic systems, categorized primarily into leukemia, lymphoma, and multiple myeloma. Their prognosis varies considerably, with a frequent risk of relapse despite ongoing treatments. While contemporary therapeutic strategies have extended overall patient survival, they do not offer cures for advanced stages and often lead to challenges such as acquisition of drug resistance, recurrence, and severe side effects. The need for innovative therapeutic targets is vital to elevate both survival rates and patients' quality of life. Recent research has pivoted towards nuclear receptors (NRs) due to their role in modulating tumor cell characteristics including uncontrolled proliferation, differentiation, apoptosis evasion, invasion and migration. Existing evidence emphasizes NRs' critical role in HM. The regulation of NR expression through agonists, antagonists, or selective modulators, contingent upon their levels, offers promising clinical implications in HM management. Moreover, several anticancer agents targeting NRs have been approved by the Food and Drug Administration (FDA). This review highlights the integral function of NRs in HM's pathophysiology and the potential benefits of therapeutically targeting these receptors, suggesting a prospective avenue for more efficient therapeutic interventions against HM.


Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Estudios Prospectivos , Calidad de Vida , Neoplasias Hematológicas/patología , Receptores Citoplasmáticos y Nucleares
8.
J Adv Res ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38190940

RESUMEN

BACKGROUND: Colorectal cancer (CRC), which is mainly caused by epigenetic and lifestyle factors, is very often associated with functional plasticity during its development. In addition, the malignant plasticity of CRC cells underscores one of their survival abilities to functionally adapt to specific stresses, including inflammation, that occur during carcinogenesis. This leads to the generation of various subsets of cancer cells with phenotypic diversity and promotes epithelial-mesenchymal transition (EMT), formation of cancer cell stem cells (CSCs) and metabolic reprogramming. This can enhance cancer cell differentiation and facilitate tumorigenic potential, drug resistance and metastasis. AIM OF REVIEW: The tumor protein p53 acts as one of the central suppressors of carcinogenesis by regulating its target genes, whose proteins are involved in the plasticity of cancer cells, autophagy, cell cycle, apoptosis, DNA repair. The aim of this review is to summarize the latest published research on resveratrol's effect in the prevention of CRC, its regulatory actions, specifically on the p53 pathway, and its treatment options. KEY SCIENTIFIC CONCEPTS OF REVIEW: Resveratrol, a naturally occurring polyphenol, is a potent inducer of a variety of tumor-controlling. However, the underlying mechanisms linking the p53 signaling pathway to the functional anti-plasticity effect of resveratrol in CRC are still poorly understood. Therefore, this review discusses novel relationships between anti-cellular plasticity/heterogeneity, pro-apoptosis and modulation of tumor protein p53 signaling in CRC oncogenesis, as one of the crucial mechanisms by which resveratrol prevents malignant phenotypic changes leading to cell migration and drug resistance, thus improving the ongoing treatment of CRC.

10.
J Adv Res ; 55: 103-118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36871616

RESUMEN

BACKGROUND: Cancer management faces multiple obstacles, including resistance to current therapeutic approaches. In the face of challenging microenvironments, cancer cells adapt metabolically to maintain their supply of energy and precursor molecules for biosynthesis and thus sustain rapid proliferation and tumor growth. Among the various metabolic adaptations observed in cancer cells, the altered glucose metabolism is the most widely studied. The aberrant glycolytic modification in cancer cells has been associated with rapid cell division, tumor growth, cancer progression, and drug resistance. The higher rates of glycolysis in cancer cells, as a hallmark of cancer progression, is modulated by the transcription factor hypoxia inducible factor 1 alpha (HIF-1α), a downstream target of the PI3K/Akt signaling, the most deregulated pathway in cancer. AIM OF REVIEW: We provide a detailed overview of current, primarily experimental, evidence on the potential effectiveness of flavonoids to combat aberrant glycolysis-induced resistance of cancer cells to conventional and targeted therapies. The manuscript focuses primarily on flavonoids reducing cancer resistance via affecting PI3K/Akt, HIF-1α (as the transcription factor critical for glucose metabolism of cancer cells that is regulated by PI3K/Akt pathway), and key glycolytic mediators downstream of PI3K/Akt/HIF-1α signaling (glucose transporters and key glycolytic enzymes). KEY SCIENTIFIC CONCEPTS OF REVIEW: The working hypothesis of the manuscript proposes HIF-1α - the transcription factor critical for glucose metabolism of cancer cells regulated by PI3K/Akt pathway as an attractive target for application of flavonoids to mitigate cancer resistance. Phytochemicals represent a source of promising substances for cancer management applicable to primary, secondary, and tertiary care. However, accurate patient stratification and individualized patient profiling represent crucial steps in the paradigm shift from reactive to predictive, preventive, and personalized medicine (PPPM / 3PM). The article is focused on targeting molecular patterns by natural substances and provides evidence-based recommendations for the 3PM relevant implementation.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Flavonoides , Medicina de Precisión , Transducción de Señal , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Factores de Transcripción , Glucosa/metabolismo , Microambiente Tumoral
11.
Cancer Metastasis Rev ; 43(1): 87-113, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37789138

RESUMEN

Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Plasticidad de la Célula , Transducción de Señal , Flavonoides/farmacología , Flavonoides/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
12.
Cancer Metastasis Rev ; 43(1): 115-133, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37768439

RESUMEN

B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.


Asunto(s)
Antígenos B7 , Neoplasias Colorrectales , Humanos , Antígenos B7/metabolismo , Neoplasias Colorrectales/patología , Inmunoterapia , Microambiente Tumoral
13.
Cancer Metastasis Rev ; 43(1): 55-85, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507626

RESUMEN

Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.


Asunto(s)
Anticarcinógenos , Neoplasias Colorrectales , Estilbenos , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal , Factores de Transcripción , Anticarcinógenos/farmacología , Neoplasias Colorrectales/patología , Estilbenos/farmacología , Estilbenos/uso terapéutico
14.
Diabetes Metab Res Rev ; 40(2): e3655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37183580

RESUMEN

Dysbiosis or imbalance of microbes in the gut has been associated with susceptibility and progression of type 1 diabetes mellitus (T1DM). The present systematic review and meta-analysis examined the effects of probiotics, prebiotics, and synbiotics on fasting blood glucose (FBG), haemoglobin A1c (HbA1c), C-peptide, and insulin requirements in T1DM patients. A systematic search for trials published up to October 2022 was conducted in PubMed, EMBASE, Scopus, Google Scholar, ScienceDirect, Web of Science, and the Central Cochrane Library. Random effect models were used to synthesise quantitative data by STATA14 . After the evaluation of 258 identified entries, five randomised controlled trials (n = 356; mean age = 11.7 years old) were included. The pooled effect size showed that FBG decreased following probiotic supplementation (weighted mean difference = -31.24 mg/dL; 95% confidence interval = -45.65, -16.83; p < 0.001), however, there was no significant improvement in serum HbA1c, C-peptide, and insulin requirements. Probiotic supplementation could be a complementary therapeutic strategy in T1DM. The evidence is limited; therefore, it is crucial to conduct more trials.


Asunto(s)
Diabetes Mellitus Tipo 1 , Probióticos , Simbióticos , Humanos , Niño , Prebióticos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada , Péptido C , Probióticos/uso terapéutico , Insulina , Insulina Regular Humana
15.
Front Immunol ; 14: 1225530, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575245

RESUMEN

Introduction: P53 represents a key player in apoptosis-induction in cancers including colorectal cancer (CRC) that ranks third worldwide in cancer prevalence as well as mortality statistics. Although a pro-apoptotic effect of resveratrol has been repeatedly proven in CRC cells, its pathway mechanisms are not completely understood, as there are controversial statements in the literature regarding its activation or inhibition of the counteracting proteins Sirt-1 and p53. Methods: CRC cells as wild-type (HCT-116 WT) or p53-deficient (HCT-116 p53-/-) were cultured using multicellular tumor microenvironment (TME) cultures containing T-lymphocytes and fibroblasts to elucidate the role of p53/Sirt-1 modulation in resveratrol's concentration-dependent, pro-apoptotic, and thus anti-cancer effects. Results: Resveratrol dose-dependently inhibited viability, proliferation, plasticity as well as migration, and induced apoptosis in HCT-116 WT more effectively than in HCT-116 p53-/- cells. Moreover, resveratrol stimulated Sirt-1 expression when administered at low concentrations (<5µM) but suppressed it when added at high concentrations (>10µM) to CRC-TME. In parallel, similar to the knockdown of Sirt-1 at the mRNA level, treatment with high-concentration resveratrol boosted the acetylation of p53, the expression of p21, Bax, cytochrome C, caspase-3, and ultimately induced apoptosis in CRC WT but not in CRC p53-/- cells. Notably, increasing concentrations of resveratrol were found to promote hyperacetylation of p53 and FOXO3a as post-translational substrates of Sirt-1, indicating a negative regulatory loop between Sirt-1 and p53. Discussion: These results demonstrate for the first time, a negative reciprocal crosstalk between the regulatory circuits of p53 and Sirt-1, consequently, apoptosis induction by higher resveratrol concentrations in CRC-TME.


Asunto(s)
Neoplasias Colorrectales , Resveratrol , Sirtuina 1 , Microambiente Tumoral , Proteína p53 Supresora de Tumor , Apoptosis , Resveratrol/farmacología , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo
16.
Front Pharmacol ; 14: 1203436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583906

RESUMEN

Background: Hypoxia-inducible factor-1α (HIF-1α) is one of the major tumor-associated transcription factors modulating numerous tumor properties such as tumor cell metabolism, survival, proliferation, angiogenesis, and metastasis. Calebin A (CA), a compound derived from turmeric, is known for its anti-cancer activity through modulation of the NF-κB pathway. However, its impact on HIF-1α in colorectal cancer (CRC) cell migration is unknown. Methods: Human CRC cells (HCT-116) in 3D alginate and monolayer multicellular TME (fibroblasts/T lymphocytes) were subjected to CA or the HIF-1α inhibitor to explore the efficacy of CA on TME-induced inflammation, migration, and tumor malignancy. Results: CA significantly inhibited TME-promoted proliferation and migration of HCT-116 cells, similar to the HIF-1α inhibitor. Colony formation, toluidine blue staining, and immunolabeling showed that CA inhibited the migration of HCT-116 cells partly by inhibiting HIF-1α, which is critical for CRC cell viability, and these observations were confirmed by electron microscopy. In addition, Western blot analysis confirmed that CA inhibited TME-initiated expression of HIF-1α and biomarkers of metastatic factors (such as NF-κB, ß1-integrin, and VEGF), and promoted apoptosis (caspase-3), in a manner comparable to the HIF-1α inhibitor. Finally, TME induced a purposeful pairing between HIF-1α and NF-κB, suggesting that the synergistic interplay between the two tumor-associated transcription factors is essential for CRC cell malignancy and migration and that CA silences these factors in tandem. Conclusion: These results shed light on a novel regulatory modulation of CA signaling in CRC cell migration, partially via HIF-1α/NF-κB with potentially relevant implications for cancer therapy.

17.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36902421

RESUMEN

Frequent development of resistance to chemotherapeutic agents such as 5-flourouracil (5-FU) complicates the treatment of advanced colorectal cancer (CRC). Resveratrol is able to utilize ß1-integrin receptors, strongly expressed in CRC cells, to transmit and exert anti-carcinogenic signals, but whether it can also utilize these receptors to overcome 5-FU chemoresistance in CRC cells has not yet been investigated. Effects of ß1-integrin knockdown on anti-cancer capabilities of resveratrol and 5-FU were investigated in HCT-116 and 5-FU-resistant HCT-116R CRC tumor microenvironment (TME) with 3D-alginate as well as monolayer cultures. Resveratrol increased CRC cell sensitivity to 5-FU by reducing TME-promoted vitality, proliferation, colony formation, invasion tendency and mesenchymal phenotype including pro-migration pseudopodia. Furthermore, resveratrol impaired CRC cells in favor of more effective utilization of 5-FU by down-regulating TME-induced inflammation (NF-kB), vascularisation (VEGF, HIF-1α) and cancer stem cell production (CD44, CD133, ALDH1), while up-regulating apoptosis (caspase-3) that was previously inhibited by TME. These anti-cancer mechanisms of resveratrol were largely abolished by antisense oligonucleotides against ß1-integrin (ß1-ASO) in both CRC cell lines, indicating the particular importance of ß1-integrin receptors for the 5-FU-chemosensitising effect of resveratrol. Lastly, co-immunoprecipitation tests showed that resveratrol targets and modulates the TME-associated ß1-integrin/HIF-1α signaling axis in CRC cells. Our results suggest for the first time the utility of the ß1-integrin/HIF-1α signaling axis related to chemosensitization and overcoming chemoresistance to 5-FU in CRC cells by resveratrol, underlining its potential supportive applications in CRC treatment.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Humanos , Resveratrol/farmacología , Integrina beta1/metabolismo , Neoplasias Colorrectales/patología , Fluorouracilo/farmacología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos
18.
Life Sci ; 318: 121504, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813082

RESUMEN

Colorectal cancer (CRC) is one of the leading malignant diseases worldwide with a high rate of metastasis and poor prognosis. Treatment options include surgery, which is usually followed by chemotherapy in advanced CRC. With treatment, cancer cells could become resistant to classical cytostatic drugs such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, and irinotecan, resulting in chemotherapeutic failure. For this reason, there is a high demand for health-preserving re-sensitization mechanisms including the complementary use of natural plant compounds. Calebin A and curcumin, two polyphenolic turmeric ingredients derived from the Asian Curcuma longa plant, demonstrate versatile anti-inflammatory and cancer-reducing abilities, including CRC-combating capacity. After an insight into their epigenetics-modifying holistic health-promoting effects, this review compares functional anti-CRC mechanisms of multi-targeting turmeric-derived compounds with mono-target classical chemotherapeutic agents. Furthermore, the reversal of resistance to chemotherapeutic drugs was presented by focusing on calebin A's and curcumin's capabilities to chemosensitize or re-sensitize CRC cells to 5-FU, oxaliplatin, cisplatin, and irinotecan. Both polyphenols enhance the receptiveness of CRC cells to standard cytostatic drugs converting them from chemoresistant into non-chemoresistant CRC cells by modulating inflammation, proliferation, cell cycle, cancer stem cells, and apoptotic signaling. Therefore, calebin A and curcumin can be tested for their ability to overcome cancer chemoresistance in preclinical and clinical trials. The future perspective of involving turmeric-ingredients curcumin or calebin A as an additive treatment to chemotherapy for patients with advanced metastasized CRC is explained.


Asunto(s)
Neoplasias Colorrectales , Curcumina , Citostáticos , Humanos , Curcumina/farmacología , Irinotecán/farmacología , Oxaliplatino/farmacología , Cisplatino/farmacología , Citostáticos/farmacología , Citostáticos/uso terapéutico , Línea Celular Tumoral , Fluorouracilo/farmacología , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos
19.
Neurochem Res ; 48(1): 39-53, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36112254

RESUMEN

Neurodegenerative diseases refer to a group of neurological disorders as a consequence of various destructive illnesses, that predominantly impact neurons in the central nervous system, resulting in impairments in certain brain functions. Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and other neurodegenerative disorders represent a major risk to human health. In order to optimize structural and functional recovery, reconstructive methods integrate many approaches now, to address the complex and multivariate pathophysiology of neurodegenerative disorders. Stem cells, with their unique property of regeneration, offer new possibilities in regenerative and reconstructive medicine. Concurrently, there is an important role for natural products in controlling many health sufferings and they can delay or even prevent the onset of various diseases. In addition, due to their therapeutic properties, they have been used as neuroprotective agents to treat neurodegenerative disorders. After decades of intensive research, scientists made advances in treating these disorders so far, but current therapies are still not capable of preventing the illnesses from progressing. Therefore, in this review, we focused on a new perspective combining stem cells and natural products as an innovative therapy option in the management of neurodegenerative diseases.


Asunto(s)
Productos Biológicos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Células Madre , Enfermedad de Parkinson/tratamiento farmacológico , Sistema Nervioso Central , Productos Biológicos/uso terapéutico
20.
Cancers (Basel) ; 14(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36358620

RESUMEN

The disease of cancer instills a sense of fear and dread among patients and the next of kin who are indirectly affected by the deteriorating quality of life of their loved ones [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...