Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 13(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505033

RESUMEN

Cellulose and copolymers of acrylonitrile (PAN) are characterized by their chemical resistance to several conventional solvents. Therefore, these polymers are often used to obtain membranes for the recovery of such solvents. In this work, for the first time, composite membranes formed from highly concentrated mixed solutions based on cellulose and PAN are considered (the total content of polymers is 18 wt.%). For mixed solutions, the morphology and rheological behavior were evaluated. It is shown that the resulting solutions are two-phase, and their morphology depends on the components' ratio and the system's history. The non-monotonous change in the viscosity with the PAN content indicates a specific interaction of cellulose and PAN in N-methylmorpholine-N-oxide solutions. The rheological behavior of mixed solutions allows for their processing in conditions identical to those of cellulose solutions. The introduction of PAN into the cellulose matrix promotes a decrease in the structural order in the system, affecting the membranes' transport properties. For composite membranes, it was found that with an increase in the content of the PAN phase, the retention of Remazol and Orange decreases, while the observed values are several times higher than those for cellulose membranes. The permeability of ethanol increases with increasing terpolymer content.

2.
Polymers (Basel) ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890637

RESUMEN

An original method is proposed for preparing highly concentrated solutions of PAN copolymer in N-methylmorpholine-N-oxide (NMMO) and forming membranes for nanofiltration from these solutions. The high activity of the solvent with respect to the polymer provides short preparation time of spinning solutions in comparison with PAN solutions obtained in other solvents. The use of the rheological approach made it possible to find the optimal concentration for obtaining membranes. The formation of PAN membranes from the obtained solutions is proposed by the rolling method. The morphology of the formed membranes depends on the method of removing the precipitant from the sample. The features of the formed morphology of PAN membranes were studied by scanning electron microscopy. It was revealed that the use of water as a rigid precipitant leads to the formation of a homogeneous and symmetric morphology in the membrane. The average pore sizes in the membrane have been obtained by porosimetry. The study of the separating properties of PAN membranes revealed noteworthy values of the permeability and rejection for the anionic dyes Orange II and Remazol Brilliant Blue (74 and 97%, respectively). The mechanical properties of PAN membranes from solutions in NMMO are not inferior to analogs formed from commercially used direct solvents.

3.
Membranes (Basel) ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323772

RESUMEN

The work is focused on the study of the influence of the cellulose type and processing parameters on the structure, morphology, and permeability of cellulose films. The free volume of the cellulose films was evaluated by the sorption of n-decane, which is a non-solvent for cellulose. The structural features of the membranes and their morphology were studied using X-ray diffraction, IR spectroscopy, SEM, and AFM methods. The characteristic features of the porous structure and properties of cellulose films regenerated from cellulose solutions in the N-methylmorpholine-N-oxide (NMMO) and cellophane films were compared. Generally, cellulose films obtained from solutions in NMMO have a higher permeability and a lower rejection (as measured using Orange II dye) as compared to cellophane films. It was also found that the cellulose films have a higher ultimate strength and modulus, whereas the cellophane films are characterized by higher elongation at break.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...