Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Hepatol ; 63(4): 789-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26026873

RESUMEN

BACKGROUND & AIMS: Hepatitis B virus (HBV) infects and replicates in quiescent hepatocytes, which are deficient in dNTPs, the critical precursors of HBV replication. Most tumor viruses promote dNTP production in host cells by inducing cell proliferation. Although HBV is known as a major cause of hepatocellular carcinoma, it does not lead to cellular proliferation. Instead, HBV acquires dNTPs by activating the expression of the R2 subunit of the Ribonucleotide Reductase (RNR) holoenzyme, the cell cycle gene that is rate-limiting for generation of dNTPs, without inducing the cell cycle. We wished to elucidate the molecular basis of HBV-dependent R2 expression in quiescent cells. METHODS: Quiescent HepG2 cells were transduced with an HBV-containing lentiviral vector, and primary human hepatocytes were infected with HBV. DNA damage response and RNR-R2 gene expression were monitored under this condition. RESULTS: We report here that HBV-induced R2 expression is mediated by the E2F1 transcription factor, and that HBV induces E2F1 accumulation, modification and binding to the R2 promoter. We found that Chk1, a known E2F1 kinase that functions in response to DNA damage, was activated by HBV. In cells where Chk1 was pharmacologically inhibited, or depleted by shRNA-mediated knockdown, HBV-mediated R2 expression was severely attenuated. Furthermore, we found that HBV attenuates DNA repair, thus reducing cellular dNTP consumption. CONCLUSIONS: Our findings demonstrate that HBV exploits the Chk1-E2F1 axis of the DNA damage response pathway to induce R2 expression in a cell cycle-independent manner. This suggests that inhibition of this pathway may have a therapeutic value for HBV carriers.


Asunto(s)
Daño del ADN/genética , Regulación Viral de la Expresión Génica , Virus de la Hepatitis B/genética , Hepatitis C/virología , ARN Viral/genética , Ribonucleótido Reductasas/genética , Activación Viral/genética , Apoptosis , Southern Blotting , Western Blotting , Ciclo Celular , División Celular , Proliferación Celular , Electroforesis en Gel de Campo Pulsado , Virus de la Hepatitis B/metabolismo , Hepatitis C/metabolismo , Hepatitis C/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Ribonucleótido Reductasas/biosíntesis
3.
Nucleic Acids Res ; 42(19): 11879-90, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25260595

RESUMEN

The circadian core clock circuitry relies on interlocked transcription-translation feedback loops that largely count on multiple protein interactions. The molecular mechanisms implicated in the assembly of these protein complexes are relatively unknown. Our bioinformatics analysis of short linear motifs, implicated in protein interactions, reveals an enrichment of the Pro-X-Asp-Leu-Ser (PXDLS) motif within circadian transcripts. We show that the PXDLS motif can bind to BMAL1/CLOCK and disrupt circadian oscillations in a cell-autonomous manner. Remarkably, the motif is evolutionary conserved in the core clock protein REV-ERBα, and additional proteins implicated in the clock's function (NRIP1, CBP). In this conjuncture, we uncover a novel cross talk between the two principal core clock feedback loops and show that BMAL/CLOCK and REV-ERBα interact and that the PXDLS motif of REV-ERBα participates in their binding. Furthermore, we demonstrate that the PXDLS motifs of NRIP1 and CBP are involved in circadian rhythmicity. Our findings suggest that the PXDLS motif plays an important role in circadian rhythmicity through regulation of protein interactions within the clock circuitry and that short linear motifs can be employed to modulate circadian oscillations.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/química , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sitios de Unión , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Ritmo Circadiano/genética , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , Dominios y Motivos de Interacción de Proteínas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...