Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2495: 29-46, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35696026

RESUMEN

The last two decades have marked significant advancement in the genome editing field. Three generations of programmable nucleases (ZFNs, TALENs, and CRISPR-Cas system) have been adopted to introduce targeted DNA double-strand breaks (DSBs) in eukaryotic cells. DNA repair machinery of the cells has been exploited to introduce insertion and deletions (indels) at the targeted DSBs to study function of any gene-of-interest. The resulting indels were generally assumed to be "random" events produced by "error-prone" DNA repair pathways. However, recent advances in computational tools developed to study the Cas9-induced mutations have changed the consensus and implied the "non-randomness" nature of these mutations. Furthermore, CRISPR-centric tools are evolving at an unprecedented pace, for example, base- and prime-editors are the newest developments that have been added to the genome editing toolbox. Altogether, genome editing tools have revolutionized our way of conducting research in life sciences. Here, we present a concise overview of genome editing tools and describe the DNA repair pathways underlying the generation of genome editing outcome.


Asunto(s)
Edición Génica , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Endonucleasas/genética , Endonucleasas/metabolismo , Edición Génica/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
2.
Sci Rep ; 11(1): 16532, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400685

RESUMEN

Recent advances in induced pluripotent stem cells (iPSCs), genome editing technologies and 3D organoid model systems highlight opportunities to develop new in vitro human disease models to serve drug discovery programs. An ideal disease model would accurately recapitulate the relevant disease phenotype and provide a scalable platform for drug and genetic screening studies. Kidney organoids offer a high cellular complexity that may provide greater insights than conventional single-cell type cell culture models. However, genetic manipulation of the kidney organoids requires prior generation of genetically modified clonal lines, which is a time and labor consuming procedure. Here, we present a methodology for direct differentiation of the CRISPR-targeted cell pools, using a doxycycline-inducible Cas9 expressing hiPSC line for high efficiency editing to eliminate the laborious clonal line generation steps. We demonstrate the versatile use of genetically engineered kidney organoids by targeting the autosomal dominant polycystic kidney disease (ADPKD) genes: PKD1 and PKD2. Direct differentiation of the respective knockout pool populations into kidney organoids resulted in the formation of cyst-like structures in the tubular compartment. Our findings demonstrated that we can achieve > 80% editing efficiency in the iPSC pool population which resulted in a reliable 3D organoid model of ADPKD. The described methodology may provide a platform for rapid target validation in the context of disease modeling.


Asunto(s)
Sistemas CRISPR-Cas , Descubrimiento de Drogas/métodos , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Terapia Molecular Dirigida , Riñón Poliquístico Autosómico Dominante/genética , Células A549 , Animales , Diferenciación Celular , Células Cultivadas , Doxiciclina/farmacología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Riñón/citología , Organoides/efectos de los fármacos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , ARN Guía de Kinetoplastida/genética , Porcinos , Canales Catiónicos TRPP/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...