Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
2.
Nutrients ; 16(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39275349

RESUMEN

Plumbagin (PLB) is a naphthoquinone extracted from Plumbago indica. In recent times, there has been a growing body of evidence suggesting the potential importance of naphthoquinones, both natural and artificial, in the pharmacological world. Numerous studies have indicated that PLB plays a vital role in combating cancers and other disorders. There is substantial evidence indicating that PLB may have a significant role in the treatment of breast cancer, brain tumours, lung cancer, hepatocellular carcinoma, and other conditions. Moreover, its potent anti-oxidant and anti-inflammatory properties offer promising avenues for the treatment of neurodegenerative and cardiovascular diseases. A number of studies have identified various pathways that may be responsible for the therapeutic efficacy of PLB. These include cell cycle regulation, apoptotic pathways, ROS induction pathways, inflammatory pathways, and signal transduction pathways such as PI3K/AKT/mTOR, STAT3/PLK1/AKT, and others. This review aims to provide a comprehensive analysis of the diverse pharmacological roles of PLB, examining the mechanisms through which it operates and exploring its potential applications in various medical conditions. In addition, we have conducted a review of the various formulations that have been reported in the literature with the objective of enhancing the efficacy of the compound. However, the majority of the reviewed data are based on in vitro and in vivo studies. To gain a comprehensive understanding of the safety and efficacy of PLB in humans and to ascertain its potential integration into therapeutic regimens for cancer and chronic diseases, rigorous clinical trials are essential. Finally, by synthesizing current research and identifying gaps in knowledge, this review seeks to enhance our understanding of PLB and its therapeutic prospects, paving the way for future studies and clinical applications.


Asunto(s)
Enfermedades Metabólicas , Naftoquinonas , Neoplasias , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Enfermedades Metabólicas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
Sci Rep ; 14(1): 19439, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169082

RESUMEN

Developing new therapeutic strategies to target specific molecular pathways has become a primary focus in modern drug discovery science. Fibroblast growth factor receptor 2 (FGFR2) is a critical signaling protein involved in various cellular processes and implicated in numerous diseases, including cancer. Existing FGFR2 inhibitors face limitations like drug resistance and specificity issues. In this study, we present an integrated structure-based bioinformatics analysis to explore the potential of FGFR2 inhibitors-like compounds from the PubChem database with the Tanimoto threshold of 80%. We conducted a structure-based virtual screening approach on a dataset comprising 2336 compounds sourced from the PubChem database. Primarily, the selection of promising compounds was based on several criteria, such as drug-likeness, binding affinities, docking scores, and selectivity. Further, we conducted all-atom molecular dynamics (MD) simulations for 200 ns, followed by an essential dynamics analysis. Finally, a promising FGFR2 inhibitor with PubChem CID:507883 (1-[7-(1H-benzimidazol-2-yl)-4-fluoro-1H-indol-3-yl]-2-(4-benzoylpiperazin-1-yl)ethane-1,2-dione) was screened out from the study. This compound indicates a higher potential for inhibiting FGFR2 than the control inhibitor, Zoligratinib. The identified compound, CID:507883 shows >80% structural similarity with Zoligratinib. ADMET analysis showed promising pharmacokinetic potential of the screened compound. Overall, the findings indicate that the compound CID:507883 may have promising potential to serve as a lead candidate against FGFR2 and could be further exploited in therapeutic development.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Unión Proteica , Desarrollo de Medicamentos , Relación Estructura-Actividad
4.
Front Oncol ; 14: 1427802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39087024

RESUMEN

Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.

5.
Front Chem ; 12: 1392650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136033

RESUMEN

Precision medicine has revolutionized modern cancer therapeutic management by targeting specific molecular aberrations responsible for the onset and progression of tumorigenesis. ROS proto-oncogene 1 (ROS1) is a receptor tyrosine kinase (RTK) that can induce tumorigenesis through various signaling pathways, such as cell proliferation, survival, migration, and metastasis. It has emerged as a promising therapeutic target in various cancer types. However, there is very limited availability of specific ROS1 inhibitors for therapeutic purposes. Exploring repurposed drugs for rapid and effective treatment is a useful approach. In this study, we utilized an integrated approach of virtual screening and molecular dynamics (MD) simulations of repurposing existing drugs for ROS1 kinase inhibition. Using a curated library of 3648 FDA-approved drugs, virtual screening identified drugs capable of binding to ROS1 kinase domain. The results unveil two hits, Midostaurin and Alectinib with favorable binding profiles and stable interactions with the active site residues of ROS1. These hits were subjected to stability assessment through all-atom MD simulations for 200 ns. MD results showed that Midostaurin and Alectinib were stable with ROS1. Taken together, the study showed a rational framework for the selection of repurposed Midostaurin and Alectinib with ROS1 inhibitory potential for therapeutic management after further validation.

6.
ACS Omega ; 9(27): 29633-29643, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005765

RESUMEN

Protein kinases are involved in various diseases and currently represent potential targets for drug discovery. These kinases play major roles in regulating the cellular machinery and control growth, homeostasis, and cell signaling. Dysregulation of kinase expression is associated with various disorders such as cancer and neurodegeneration. Pyruvate dehydrogenase kinase 3 (PDK3) is implicated in cancer therapeutics as a potential drug target. In this current study, a molecular docking exhibited a strong binding affinity of myricetin to PDK3. Further, a 100 ns all-atom molecular dynamics (MD) simulation study provided insights into the structural dynamics and stability of the PDK3-myricetin complex, revealing the formation of a stable complex with minimal structural alterations upon ligand binding. Additionally, the actual affinity was ascertained by fluorescence binding studies, and myricetin showed appreciable binding affinity to PDK3. Further, the kinase inhibition assay suggested significant inhibition of PDK3 by myricetin, revealing an excellent inhibitory potential with an IC50 value of 3.3 µM. In conclusion, this study establishes myricetin as a potent PDK3 inhibitor that can be implicated in therapeutic targeting cancer and PDK3-associated diseases. In addition, this study underscores the efficacy of myricetin as a potential lead to drug discovery and provides valuable insights into the inhibition mechanism, enabling advancements in cancer therapeutics.

7.
Front Pharmacol ; 15: 1424175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005934

RESUMEN

Histone deacetylase 3 (HDAC3) is a member of the histone deacetylase family that has emerged as a crucial target in the quest for novel therapeutic interventions against various complex diseases, including cancer. The repositioning of FDA-approved drugs presents a promising avenue for the rapid discovery of potential HDAC3 inhibitors. In this study, we performed a structure-based virtual screening of FDA-approved drugs obtained from DrugBank. Candidate hits were selected based on their binding affinities and interactions with HDAC3. These promising hits were then subjected to a comprehensive assessment of their biological properties and drug profiles. Our investigation identified two FDA-approved drugs, Imatinib and Carpipramine, characterized by their exceptional affinity and specificity for the binding pocket of HDAC3. These molecules demonstrated a strong preference for HDAC3 binding site and formed interactions with functionally significant residues within the active site pocket. To gain deeper insights into the binding dynamics, structural stability, and interaction mechanisms, we performed molecular dynamics (MD) simulations spanning 300 nanoseconds (ns). The results of MD simulations indicated that Imatinib and Carpipramine stabilized the structure of HDAC3 and induced fewer conformational changes. Taken together, the findings from this study suggest that Imatinib and Carpipramine may offer significant therapeutic potential for treating complex diseases, especially cancer.

8.
Heliyon ; 10(13): e32755, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027624

RESUMEN

The involvement of neuroinflammation in the pathogenesis of neurodegenerative disorders (NDs) is very significant. Currently, only symptomatic treatments exist, and there are no drugs that modify the progression of Alzheimer's disease (AD) or other NDs. Consequently, there is increasing attention on addressing AD-related neuroinflammation using anti-inflammatory compounds and antioxidants. Currently, there is a growing exploration of dietary phytochemicals as potential therapeutic agents for treating inflammation. Citral, a monoterpene, is under increasing investigation due to its neuroprotective effects. The dysregulation of iron homeostasis is a crucial factor in supporting neuroinflammation, underscoring the significance of proper iron balance. Human transferrin (htf) is a major player involved in iron homeostasis. In this study, we examined binding and dynamics of htf-citral complex through diverse experimental methods. Molecular docking studies revealed that citral binds to crucial residues of htf, forming a stable complex. UV-visible spectroscopy demonstrated binding of citral with htf with good affinity, evident from binding constant of 1.48 × 105 M-1. Further, fluorescence spectroscopy entrenched a stable htf-citral complex formation; citral demonstrates an excellent binding affinity to htf with a binding constant of 106 M-1. Moreover, fluorescence binding assay at various temperatures deciphered htf-citral complex to be driven by both static and dynamic quenching. The analysis of enthalpy change (ΔH) and entropy change (ΔS) demonstrated that htf-citral complex formation was driven mainly by hydrophobic interactions.The current work gives a platform to develop innovative therapeutic strategies targeting neuroinflammation through citral, particularly iron homeostasis.

9.
J Alzheimers Dis ; 100(2): 475-485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38875044

RESUMEN

Background: HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) plays a pivotal role as a control enzyme in ketogenesis, and its association with the amyloid-ß protein precursor (AßPP) in mitochondria implicates a potential involvement in Alzheimer's disease (AD) pathophysiology. Objective: Our study aimed at identifying repurposed drugs using the DrugBank database capable of inhibiting HMGCS2 activity. Methods: Exploiting the power of drug repurposing in conjunction with virtual screening and molecular dynamic (MD) simulations against 'HMGCS2', we present new in-silico insight into structure-based drug repurposing. Results: The initial molecules were screened for their binding affinity to HMGCS2. Subsequent interaction analyses and extensive 300 ns MD simulations were conducted to explore the conformational dynamics and stability of HMGCS2 in complex with the screened molecules, particularly Penfluridol and Lurasidone. Conclusions: The study revealed that HMGCS2 forms stable protein-ligand complexes with Penfluridol and Lurasidone. Our findings indicate that Penfluridol and Lurasidone competitively bind to HMGCS2 and warrant their further exploration as potential repurposed molecules for anti-Alzheimer's drug development.


Asunto(s)
Enfermedad de Alzheimer , Reposicionamiento de Medicamentos , Hidroximetilglutaril-CoA Sintasa , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Hidroximetilglutaril-CoA Sintasa/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
J Alzheimers Dis ; 99(1): 333-343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701154

RESUMEN

Background: Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective: In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods: Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results: Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions: The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.


Asunto(s)
Enfermedad de Alzheimer , Limoneno , Simulación del Acoplamiento Molecular , Transferrina , Limoneno/farmacología , Limoneno/metabolismo , Limoneno/química , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Transferrina/metabolismo , Simulación de Dinámica Molecular , Terpenos/farmacología , Terpenos/química , Terpenos/metabolismo , Unión Proteica
11.
J Mol Model ; 30(6): 170, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753123

RESUMEN

CONTEXT: In the pursuit of novel therapeutic possibilities, repurposing existing drugs has gained prominence as an efficient strategy. The findings from our study highlight the potential of repurposed drugs as promising candidates against receptor for advanced glycation endproducts (RAGE) that offer therapeutic implications in cancer, neurodegenerative conditions and metabolic syndromes. Through careful analyses of binding affinities and interaction patterns, we identified a few promising candidates, ultimately focusing on sertindole and temoporfin. These candidates exhibited exceptional binding affinities, efficacy, and specificity within the RAGE binding pocket. Notably, they displayed a pronounced propensity to interact with the active site of RAGE. Our investigation further revealed that sertindole and temoporfin possess desirable pharmacological properties that highlighted them as attractive candidates for targeted drug development. Overall, our integrated computational approach provides a comprehensive understanding of the interactions between repurposed drugs, sertindole and temoporfin and RAGE that pave the way for future experimental validation and drug development endeavors. METHODS: We present an integrated approach utilizing molecular docking and extensive molecular dynamics (MD) simulations to evaluate the potential of FDA-approved drugs, sourced from DrugBank, against RAGE. To gain deeper insights into the binding mechanisms of the elucidated candidate repurposed drugs, sertindole and temoporfin with RAGE, we conducted extensive all-atom MD simulations, spanning 500 nanoseconds (ns). These simulations elucidated the conformational dynamics and stability of the RAGE-sertindole and RAGE-temoporfin complexes.


Asunto(s)
Reposicionamiento de Medicamentos , Imidazoles , Indoles , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptor para Productos Finales de Glicación Avanzada , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/química , Humanos , Indoles/química , Indoles/farmacología , Imidazoles/química , Imidazoles/farmacología , Unión Proteica , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Sitios de Unión
12.
Front Pharmacol ; 15: 1397332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799161

RESUMEN

In present times, vanillin stands out as a promising therapeutic molecule that can be implicated in the treatment of neurodegenerative disorders (NDs), notably Alzheimer's disease (AD). This can be attributed to the highly potent scavenging activity of vanillin against reactive oxygen species (ROS). Oxidative stress leads to generation of ROS that serves a critical role in AD's pathological progression. It is apparent from various studies that diets rich in polyphenols prevent oxidative stress associated with AD development, implying the crucial role of vanillin in AD therapeutics. It is crucial to maintain iron balance to manage AD associated oxidative stress, unveiling the significance of human transferrin (hTf) that maintains iron homeostasis. Here, we have performed an integrated study of spectroscopic and computational approaches to get insight into the binding mechanism of vanillin with hTf. In the preliminary study, molecular docking deciphered that vanillin primarily occupies the hTf binding pocket, forming multiple interactions with its key residues. Moreover, the binding mechanism was evaluated at an atomistic level employing comprehensive molecular dynamic (MD) simulation. MD analysis demonstrated that binding of vanillin to hTf stabilizes its structure, without inducing any significant alterations in its native conformation. The docked complex was maintained throughout the simulations without changing its original conformation. Essential dynamics analysis further confirms that hTf achieved a stable conformation with vanillin. The outcomes were further supplemented by fluorescence spectroscopy which confirms the formation of stable hTf-vanillin complex. Taken together, the current study unveils the interaction mechanism of vanillin with hTf and providing a platform to use vanillin in AD therapeutics in the context of iron homeostasis.

13.
ACS Omega ; 9(14): 16089-16096, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617645

RESUMEN

Human transferrin (Htf) is vital in maintaining iron within the brain cells; any disruption results in the development of neurodegenerative diseases (NDs) and other related pathologies, especially Alzheimer's disease (AD). Ellagic acid (EA), a naturally occurring phenolic antioxidant, possesses neuroprotective potential and is present in a broad variety of fruits and vegetables. The current work explores the binding mechanism of dietary polyphenol, EA, with Htf by a combination of experimental and computational approaches. Molecular docking studies unveiled the binding of EA to Htf with good affinity. Molecular dynamic (MD) simulation further provided atomistic details of the binding process, demonstrating a stable Htf-EA complex formation without causing substantial alterations to the protein's conformation. Furthermore, fluorescence binding measurements indicated that EA forms a high-affinity interaction with Htf. Isothermal titration calorimetric measurements advocated the spontaneous nature of binding and also revealed the binding process to be exothermic. In conclusion, the study deciphered the binding mechanism of EA with Htf. The results demonstrated that EA binds with Htf with an excellent affinity spontaneously, thereby laying the groundwork for potential applications of EA in the realm of therapeutics for NDs in the context of iron homeostasis.

14.
J Pers Med ; 14(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38673007

RESUMEN

Huntington's disease (HD) is a chronic, inherited neurodegenerative condition marked by chorea, dementia, and changes in personality. The primary cause of HD is a mutation characterized by the expansion of a triplet repeat (CAG) within the huntingtin gene located on chromosome 4. Despite substantial progress in elucidating the molecular and cellular mechanisms of HD, an effective treatment for this disorder is not available so far. In recent years, researchers have been interested in studying cerebrospinal fluid (CSF) as a source of biomarkers that could aid in the diagnosis and therapeutic development of this disorder. Immunoglobulin heavy constant gamma 1 (IGHG1) is one of the CSF proteins found to increase significantly in HD. Considering this, it is reasonable to study the potential involvement of deleterious mutations in IGHG1 in the pathogenesis of this disorder. In this study, we explored the potential impact of deleterious mutations on IGHG1 and their subsequent association with HD. We evaluated 126 single-point amino acid substitutions for their impact on the structure and functionality of the IGHG1 protein while exploiting multiple computational resources such as SIFT, PolyPhen-2, FATHMM, SNPs&Go mCSM, DynaMut2, MAESTROweb, PremPS, MutPred2, and PhD-SNP. The sequence- and structure-based tools highlighted 10 amino acid substitutions that were deleterious and destabilizing. Subsequently, out of these 10 mutations, eight variants (Y32C, Y32D, P34S, V39E, C83R, C83Y, V85M, and H87Q) were identified as pathogenic by disease phenotype predictors. Finally, two pathogenic variants (Y32C and P34S) were found to reduce the solubility of the protein, suggesting their propensity to form protein aggregates. These variants also exhibited higher residual frustration within the protein structure. Considering these findings, the study hypothesized that the identified variants of IGHG1 may compromise its function and potentially contribute to HD pathogenesis.

15.
Front Pharmacol ; 15: 1348128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495092

RESUMEN

Human transferrin (htf) plays a crucial role in regulating the balance of iron within brain cells; any disruption directly contributes to the development of Neurodegenerative Diseases (NDs) and other related pathologies, especially Alzheimer's Disease (AD). In recent times, a transition towards natural compounds is evident to treat diseases and this shift is mainly attributed to their broad therapeutic potential along with minimal side effects. Capsaicin, a natural compound abundantly found in red and chili peppers, possess neuroprotective potential. The current work targets to decipher the interaction mechanism of capsaicin with htf using experimental and computational approaches. Molecular docking analysis revealed that capsaicin occupies the iron binding pocket of htf, with good binding affinity. Further, the binding mechanism was investigated atomistically using Molecular dynamic (MD) simulation approach. The results revealed no significant alterations in the structure of htf implying the stability of the complex. In silico observations were validated by fluorescence binding assay. Capsaicin binds to htf with a binding constant (K) of 3.99 × 106 M-1, implying the stability of the htf-capsaicin complex. This study lays a platform for potential applications of capsaicin in treatment of NDs in terms of iron homeostasis.

16.
ACS Omega ; 9(10): 12262-12271, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496993

RESUMEN

α-Synuclein (α-Syn) fibrillation is a prominent contributor to neuronal deterioration and plays a significant role in the advancement of Parkinson's Disease (PD). Considering this, the exploration of novel compounds that can inhibit or modulate the aggregation of α-Syn is a topic of significant research. This study, for the first time, elucidated the effect of N-acetyl aspartate (NAA), a brain osmolyte, on α-Syn aggregation using spectroscopic and microscopic approaches. Thioflavin T (ThT) assay revealed that a lower concentration of NAA inhibits α-Syn aggregation, whereas higher concentrations of NAA accelerate the aggregation. Further, this paradoxical effect of NAA was complemented by ANS, RLS, and the turbidity assay. The secondary structure transition was more pronounced at higher concentrations of NAA by circular dichroism, corroborating the fluorescence spectroscopic observations. Confocal microscopy also confirmed the paradoxical effect of NAA on α-Syn aggregation. Interaction studies including fluorescence quenching and molecular docking were employed to determine the binding affinity and critical residues involved in the α-Syn-NAA interaction. The explanation for this paradoxical nature of NAA could be a solvophobic effect. The results offer a profound understanding of the modulatory mechanism of α-Syn aggregation by NAA, thereby suggesting the potential role of NAA at lower concentrations in therapeutics against α-Syn aggregation-related disorders.

17.
Biomed Pharmacother ; 173: 116332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430630

RESUMEN

Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.


Asunto(s)
Neoplasias de la Mama , Flavonoides , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Especies Reactivas de Oxígeno , Benzoquinonas/farmacología , Benzoquinonas/uso terapéutico , Apoptosis , Nucleótidos/metabolismo , ADN , Monoéster Fosfórico Hidrolasas/genética , Línea Celular Tumoral
19.
Int J Biol Macromol ; 264(Pt 2): 130624, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453105

RESUMEN

Cyclin-dependent kinase 6 (CDK6) participates in numerous signalling pathways and regulates various physiological processes. Due to its unique structural features and promising therapeutic potential, CDK6 has emerged as a drug target for designing and developing small-molecule inhibitors for anti-cancer therapeutics and other CDK6-associated diseases. The current study evaluates binding affinity and the inhibitory potential of rutin for CDK6 to develop a proof of concept for rutin as a potent CDK6 inhibitor. Molecular docking and 200 ns all-atom simulations reveal that rutin binds to the active site pocket of CDK6, forming interactions with key residues of the binding pocket. In addition, the CDK6-rutin complex remains stable throughout the simulation trajectory. A high binding constant (Ka = 7.6 × 105M-1) indicates that rutin has a strong affinity for CDK6. Isothermal titration calorimetry has further validated a strong binding of rutin with CDK6 and its spontaneous nature. The kinase activity of CDK6 is significantly inhibited by rutin with an IC50 value of 3.10 µM. Our findings highlight the significant role of rutin in developing potential therapeutic molecules to manage cancer and CDK6-associated diseases via therapeutic targeting of CDK6.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Neoplasias , Humanos , Rutina/farmacología , Simulación del Acoplamiento Molecular , Fosforilación , Procesamiento Proteico-Postraduccional
20.
Heliyon ; 10(3): e25284, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322847

RESUMEN

Ustukhuddus (Lavandula stoechas L.) has been extensively used orally and topically in treating various neurological disorders, including dementia. The optimum potential of traditional dosage forms of Ustukhuddus is limited for various reasons. Transdermal drug delivery system (TDDS) is a novel means of drug delivery and is known to overcome the drawbacks associated with traditional dosage forms. The current study aimed at fabricating and evaluating Ustukhuddus hydro-alcoholic extract (UHAE) and essential oil (UEO) loaded matrix-type transdermal patches having a combination of hydrophilic - hydroxyl propyl methyl cellulose (HPMC) and hydrophobic - ethyl cellulose (EC) polymers. ATR-FTIR, DSC, XRD, and SEM analysis were carried out to study drug-polymer interactions, confirming the formation of developed patches and drug compatibility with excipients. We assessed the fabricated patches to evaluate their physicochemical properties, in vitro drug release, and permeation characteristics via ex vivo experiments. The physicochemical characteristics of patches showcased the development of good and stable films with clarity, smoothness, homogeneity, optimum flexibility and free from causing skin irritancy or sensitization. In vitro drug release and ex vivo permeation profile of developed patches were evaluated employing Franz diffusion cells. UHAE and UEO patches exhibited a cumulative drug release of 81.61 and 85.24 %, respectively, in a sustained-release manner and followed non-Fickian release mechanisms. The ex vivo permeation data revealed 66.82 % and 76.41 % of drug permeated from UHAE and UEO patches, respectively. The current research suggests that the formulated patches are more suitable for TDDS and hold potential significance in the treatment of dementia, contributing to enhanced patient compliance, thereby highlighting the implication of Unani Medicine in Nisyan (Dementia) treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...