Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Rep ; 14(1): 4654, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409353

RESUMEN

Admixture mapping has been useful in identifying genetic variations linked to phenotypes, adaptation and diseases. Copy number variations (CNVs) represents genomic structural variants spanning large regions of chromosomes reaching several megabases. In this investigation, the "Canary" algorithm was applied to 102 Tunisian samples and 991 individuals from eleven HapMap III populations to genotype 1279 copy number polymorphisms (CNPs). In this present work, we investigate the Tunisian population structure using the CNP makers previously identified among Tunisian. The study revealed that Sub-Saharan African populations exhibited the highest diversity with the highest proportions of allelic CNPs. Among all the African populations, Tunisia showed the least diversity. Individual ancestry proportions computed using STRUCTURE analysis revealed a major European component among Tunisians with lesser contribution from Sub-Saharan Africa and Asia. Population structure analysis indicated the genetic proximity with Europeans and noticeable distance from the Sub-Saharan African and East Asian clusters. Seven genes harbouring Tunisian high-frequent CNPs were identified known to be associated with 9 Mendelian diseases and/or phenotypes. Functional annotation of genes under selection highlighted a noteworthy enrichment of biological processes to receptor pathway and activity as well as glutathione metabolism. Additionally, pathways of potential concern for health such as drug metabolism, infectious diseases and cancers exhibited significant enrichment. The distinctive genetic makeup of the Tunisians might have been influenced by various factors including natural selection and genetic drift, resulting in the development of distinct genetic variations playing roles in specific biological processes. Our research provides a justification for focusing on the exclusive genome organization of this population and uncovers previously overlooked elements of the genome.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma , Pueblo Norteafricano , Humanos , Proyecto Mapa de Haplotipos , Genotipo , Genética de Población , Polimorfismo de Nucleótido Simple
2.
Cancers (Basel) ; 15(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37370739

RESUMEN

(1) Background: Immunosuppression is a key barrier to effective anti-cancer therapies, particularly in triple-negative breast cancer (TNBC), an aggressive and difficult to treat form of breast cancer. We investigated here whether the combination of doxorubicin, a standard chemotherapy in TNBC with glyceryltrinitrate (GTN), a nitric oxide (NO) donor, could overcome chemotherapy resistance and highlight the mechanisms involved in a mouse model of TNBC. (2) Methods: Balb/C-bearing subcutaneous 4T1 (TNBC) tumors were treated with doxorubicin (8 mg/Kg) and GTN (5 mg/kg) and monitored for tumor growth and tumor-infiltrating immune cells. The effect of treatments on MDSCs reprogramming was investigated ex vivo and in vitro. (3) Results: GTN improved the anti-tumor efficacy of doxorubicin in TNBC tumors. This combination increases the intra-tumor recruitment and activation of CD8+ lymphocytes and dampens the immunosuppressive function of PMN-MDSCs PD-L1low. Mechanistically, in PMN-MDSC, the doxorubicin/GTN combination reduced STAT5 phosphorylation, while GTN +/- doxorubicin induced a ROS-dependent cleavage of STAT5 associated with a decrease in FATP2. (4) Conclusion: We have identified a new combination enhancing the immune-mediated anticancer therapy in a TNBC mouse model through the reprograming of PMN-MDSCs towards a less immunosuppressive phenotype. These findings prompt the testing of GTN combined with chemotherapies as an adjuvant in TNBC patients experiencing treatment failure.

3.
Hepatology ; 77(2): 501-511, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35989577

RESUMEN

BACKGROUND AND AIMS: Porto-sinusoidal vascular disorder (PSVD) is a group of liver vascular diseases featuring lesions encompassing the portal venules and sinusoids unaccompanied by cirrhosis, irrespective of the presence/absence of portal hypertension. It can occur secondary to coagulation disorders or insult by toxic agents. However, the cause of PSVD remains unknown in most cases. Hereditary cases of PSVD are exceptionally rare, but they are of particular interest and may unveil genetic alterations and molecular mechanisms associated with the disease. APPROACH AND RESULTS: We performed genome sequencing of four patients and two healthy individuals of a large multigenerational Lebanese family with PSVD and identified a heterozygous deleterious variant (c.547C>T, p.R183W) of FCH and double SH3 domains 1 ( FCHSD1 ), an uncharacterized gene, in patients. This variant segregated with the disease, and its pattern of inheritance was suggestive of autosomal dominant with variable expressivity. RNA structural modelling of human FCHSD1 suggests that the C-to-T substitution at position 547, corresponding to FCHSD1R183W , may increase both messenger RNA (mRNA) and protein stability and its interaction with MTOR-associated protein, LST8 homolog, a key protein of the mechanistic target of rapamycin (mTOR pathway). These predictions were substantiated by biochemical analyses, which showed that FCHSD1R183W induced high FCHSD1 mRNA stability, overexpression of FCHSD1 protein, and an increase in mTORC1 activation. This human FCHSD1 variant was introduced into mice through CRISPR/Cas9 genome editing. Nine out of the 15 mice carrying the human FCHSD1R183W variant mimicked the phenotype of human PSVD, including splenomegaly and enlarged portal vein. CONCLUSIONS: Aberrant FCHSD1 structure and function leads to mTOR pathway overactivation and may cause PSVD.


Asunto(s)
Hipertensión Portal , Enfermedades Vasculares , Humanos , Ratones , Animales , Predisposición Genética a la Enfermedad , Familia Extendida , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Hipertensión Portal/metabolismo , Genómica
4.
Cell Death Dis ; 13(9): 810, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130933

RESUMEN

Migration and invasion inhibitory protein (MIIP) has been identified as a tumor suppressor in various cancer types. Although MIIP is reported to exert tumor suppressive functions by repressing proliferation and metastasis of cancer cells, the detailed mechanism is poorly understood. In the present study, we found MIIP is a favorable indicator of prognosis in triple-negative breast cancer. MIIP could inhibit tumor angiogenesis, proliferation, and metastasis of triple-negative breast cancer cells in vivo and in vitro. Mechanistically, MIIP directly interacted with ITGB3 and suppressed its downstream signaling. As a result, ß-catenin was reduced due to elevated ubiquitin-mediated degradation, leading to downregulated VEGFA production and epithelial mesenchymal transition. More importantly, we found RGD motif is essential for MIIP binding with ITGB3 and executing efficient tumor-suppressing effect. Our findings unravel a novel mechanism by which MIIP suppresses tumorigenesis in triple-negative breast cancer, and MIIP is thus a promising molecular biomarker or therapeutic target for the disease.


Asunto(s)
Neoplasias de la Mama Triple Negativas , beta Catenina , Carcinogénesis/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal/genética , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Neoplasias de la Mama Triple Negativas/genética , Ubiquitinas/metabolismo , beta Catenina/metabolismo
5.
Front Immunol ; 13: 875764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572581

RESUMEN

Immunotherapy has allowed major advances in oncology in the past years, in particular with the development of immune checkpoint inhibitors, but the clinical benefits are still limited, particularly in colorectal cancer (CRC). Our scientific approach is based on the search for innovative immunotherapy with a final goal that aims to induce an effective antitumor immune response in CRC. Here, we focused on a multikinase inhibitor, H89. We carried out in vivo experiments based on syngeneic mouse models of colon cancer in BALB/c mice and chemically colon tumorigenesis. Flow cytometry, RNAseq, RT-qPCR, antibody-specific immune cell depletion, and Western blot were used to identify the immune cell type involved in the preventive and antitumor activity of H89. We demonstrated that H89 delays colon oncogenesis and prevents tumor growth. This latter effect seems to involve NK cells. H89 also inhibits colon tumor growth in a T-cell-dependent manner. Analysis of the immune landscape in the tumor microenvironment showed an increase of CD4+ Th1 cells and CD8+ cytotoxic T cells but a decrease of CD4+ Treg cell infiltration. Mechanistically, we showed that H89 could promote naïve CD4+ T-cell differentiation into Th1, a decrease in Treg differentiation, and an increase in CD8+ T-cell activation and cytotoxicity ex vivo. Furthermore, H89 induced overexpression of genes involved in antitumor immune response, such as IL-15RA, which depletion counteracts the antitumor effect of H89. We also found that H89 regulated Akt/PP2A pathway axis, involved in TCR and IL-15 signaling transduction. Our findings identify the H89 as a potential strategy for immune system activation leading to the prevention and treatment of CRC.


Asunto(s)
Neoplasias del Colon , Inhibidores de Proteínas Quinasas , Animales , Neoplasias del Colon/terapia , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Microambiente Tumoral
6.
Lancet Oncol ; 23(3): 341-352, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150601

RESUMEN

BACKGROUND: Disparities in the genetic risk of cancer among various ancestry groups and populations remain poorly defined. This challenge is even more acute for Middle Eastern populations, where the paucity of genomic data could affect the clinical potential of cancer genetic risk profiling. We used data from the phase 1 cohort of the Qatar Genome Programme to investigate genetic variation in cancer-susceptibility genes in the Qatari population. METHODS: The Qatar Genome Programme generated high-coverage genome sequencing on DNA samples collected from 6142 native Qataris, stratified into six distinct ancestry groups: general Arab, Persian, Arabian Peninsula, Admixture Arab, African, and South Asian. In this population-based, cohort study, we evaluated the performance of polygenic risk scores for the most common cancers in Qatar (breast, prostate, and colorectal cancers). Polygenic risk scores were trained in The Cancer Genome Atlas (TCGA) dataset, and their distributions were subsequently applied to the six different genetic ancestry groups of the Qatari population. Rare deleterious variants within 1218 cancer susceptibility genes were analysed, and their clinical pathogenicity was assessed by ClinVar and the CharGer computational tools. FINDINGS: The cohort included in this study was recruited by the Qatar Biobank between Dec 11, 2012, and June 9, 2016. The initial dataset comprised 6218 cohort participants, and whole genome sequencing quality control filtering led to a final dataset of 6142 samples. Polygenic risk score analyses of the most common cancers in Qatar showed significant differences between the six ancestry groups (p<0·0001). Qataris with Arabian Peninsula ancestry showed the lowest polygenic risk score mean for colorectal cancer (-0·41), and those of African ancestry showed the highest average for prostate cancer (0·85). Cancer-gene rare variant analysis identified 76 Qataris (1·2% of 6142 individuals in the Qatar Genome Programme cohort) carrying ClinVar pathogenic or likely pathogenic variants in clinically actionable cancer genes. Variant analysis using CharGer identified 195 individuals carriers (3·17% of the cohort). Breast cancer pathogenic variants were over-represented in Qataris of Persian origin (22 [56·4%] of 39 BRCA1/BRCA2 variant carriers) and completely absent in those of Arabian Peninsula origin. INTERPRETATION: We observed a high degree of heterogeneity for cancer predisposition genes and polygenic risk scores across ancestries in this population from Qatar. Stratification systems could be considered for the implementation of national cancer preventive medicine programmes. FUNDING: Qatar Foundation.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Estudios de Cohortes , Humanos , Masculino , Neoplasias/epidemiología , Neoplasias/genética , Oncogenes , Qatar/epidemiología
7.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33529170

RESUMEN

The development of prophylactic and therapeutic agents for coronavirus disease 2019 (COVID-19) is a current global health priority. Here, we investigated the presence of cross-neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dromedary camels that were Middle East respiratory syndrome coronavirus (MERS-CoV) seropositive but MERS-CoV free. The tested 229 dromedaries had anti-MERS-CoV camel antibodies with variable cross-reactivity patterns against SARS-CoV-2 proteins, including the S trimer and M, N, and E proteins. Using SARS-CoV-2 competitive immunofluorescence immunoassays and pseudovirus neutralization assays, we found medium-to-high titers of cross-neutralizing antibodies against SARS-CoV-2 in these animals. Through linear B cell epitope mapping using phage immunoprecipitation sequencing and a SARS-CoV-2 peptide/proteome microarray, we identified a large repertoire of Betacoronavirus cross-reactive antibody specificities in these dromedaries and demonstrated that the SARS-CoV-2-specific VHH antibody repertoire is qualitatively diverse. This analysis revealed not only several SARS-CoV-2 epitopes that are highly immunogenic in humans, including a neutralizing epitope, but also epitopes exclusively targeted by camel antibodies. The identified SARS-CoV-2 cross-neutralizing camel antibodies are not proposed as a potential treatment for COVID-19. Rather, their presence in nonimmunized camels supports the development of SARS-CoV-2 hyperimmune camels, which could be a prominent source of therapeutic agents for the prevention and treatment of COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Camelus/inmunología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , COVID-19/inmunología , Camelus/virología , Reacciones Cruzadas , Epítopos , Femenino , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
8.
NPJ Genom Med ; 6(1): 3, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420067

RESUMEN

Copy number variation (CNV) is considered as the most frequent type of structural variation in the human genome. Some CNVs can act on human phenotype diversity, encompassing rare Mendelian diseases and genomic disorders. The North African populations remain underrepresented in public genetic databases in terms of single-nucleotide variants as well as for larger genomic mutations. In this study, we present the first CNV map for a North African population using the Affymetrix Genome-Wide SNP (single-nucleotide polymorphism) array 6.0 array genotyping intensity data to call CNVs in 102 Tunisian healthy individuals. Two softwares, PennCNV and Birdsuite, were used to call CNVs in order to provide reliable data. Subsequent bioinformatic analyses were performed to explore their features and patterns. The CNV map of the Tunisian population includes 1083 CNVs spanning 61.443 Mb of the genome. The CNV length ranged from 1.017 kb to 2.074 Mb with an average of 56.734 kb. Deletions represent 57.43% of the identified CNVs, while duplications and the mixed loci are less represented. One hundred and three genes disrupted by CNVs are reported to cause 155 Mendelian diseases/phenotypes. Drug response genes were also reported to be affected by CNVs. Data on genes overlapped by deletions and duplications segments and the sequence properties in and around them also provided insights into the functional and health impacts of CNVs. These findings represent valuable clues to genetic diversity and personalized medicine in the Tunisian population as well as in the ethnically similar populations from North Africa.

9.
Case Rep Med ; 2020: 7163038, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293961

RESUMEN

Recessive mutations in the TMTC3 gene have been reported in thirteen patients to date exhibiting development delay, intellectual disability (ID), seizures, and muscular hypotonia, accompanied occasionally by neuronal migration defects expressed as either cobblestone lissencephaly or periventricular hypertopia. Here, we report a new case of a TMTC3-related syndrome in a Lebanese family with two affected siblings showing severe psychomotor retardation, intellectual disability, microcephaly, absence of speech, muscular hypotonia, and seizures. Whole exome sequencing revealed a homozygous pathogenic variant c.211 C > T (p.R71C) in the TMTC3 gene in both siblings. A review of the literature on TMTC3-related syndrome and its causal mutations is provided.

10.
J Transl Med ; 18(1): 472, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298113

RESUMEN

Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and leading to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host and the exposome-a combination of environmental drivers, including diet, lifestyle, pollutants and other factors throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular disorders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual's biology, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, therapeutics and prognostication through the use of large complex datasets that incorporate individual gene, function, and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence (AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven technologies, such as AI, in preventing, treating and reversing lifestyle-related diseases.


Asunto(s)
Inteligencia Artificial , Diabetes Mellitus , Enfermedad Crónica , Diabetes Mellitus/terapia , Manejo de la Enfermedad , Humanos , Medicina de Precisión
11.
J Cell Mol Med ; 24(19): 11294-11306, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32853466

RESUMEN

Familial Mediterranean fever (FMF) is the most common auto-inflammatory disease. It is transmitted as autosomal recessive trait with mutations in MEditerranean FeVer (MEFV) gene. Despite a typical clinical expression, many patients have either a single or no mutation in MEFV. The current work is aimed to revisit the genetic landscape of FMF disease using high-coverage whole genome sequencing. In atypical patients (carrying a single or no mutation in MEFV), we revealed many rare variants in genes associated with auto-inflammatory disorders, and more interestingly, we discovered a novel variant ( a 2.1-Kb deletion) in exon 11 of IL1RL1 gene, present only in patients. To validate and screen this patient-specific variant, a tandem of allele-specific PCR and quantitative real-time PCR was performed in 184 FMF patients and 218 healthy controls and we demonstrated that the novel deletion was absent in controls and was present in more than 19% of patients. This study sheds more light on the mutational landscape of FMF. Our discovery of a disease-specific variant in IL1RL1 gene may constitute a novel genetic marker for FMF. This finding suggesting a potential role of the IL33/ST2 signalling in the disease pathogenicity highlights a new paradigm in FMF pathophysiology.


Asunto(s)
Fiebre Mediterránea Familiar/genética , Genoma Humano , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Mutación/genética , Análisis de Secuencia de ADN , Transducción de Señal , Adolescente , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN/genética , Femenino , Eliminación de Gen , Genes Modificadores , Predisposición Genética a la Enfermedad , Humanos , Inflamación/genética , Inflamación/patología , Masculino , Pirina/genética
12.
Cell Death Discov ; 5: 139, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31583122

RESUMEN

Prostate cancer (PC) castration resistance has been linked to the differentiation of PC luminal cells into hormone-refractory neuroendocrine (NE) cells. However, the molecular mechanisms controlling the emergence of lethal NE prostate cancer (NEPC) remain unclear. The present study aimed to investigate the mechanisms underlying the transition from prostate adenocarcinoma to NEPC. The microRNA miR-708 was involved in NE differentiation and was downregulated in NEPC cells and tumor specimens. miR-708 targeted Sestrin-3 to inhibit Forkhead Box O1 (FOXO1) phosphorylation, resulting in apoptosis of prostate adenocarcinoma cells and AKT-inactivated NEPC cells, the latter of which was consistent with the progression of tumor xenografts in mice under miR-708 treatment. In silico analysis of PC and NEPC tumor specimens suggested that the polycomb repressive complex subunit Enhancer of zeste homolog 2 (EZH2) was particularly overexpressed in NEPC. Notably, EZH2 bound to the miR-708 promoter and induced its silencing in NEPC. Inhibition of EZH2 prevented NE differentiation of PC cells. EZH2 expression was regulated by both Cyclin Dependent Kinase 1 (CDK1) and Wnt signaling. Silencing transcription factor 4 (TCF4), as a key protein in Wnt signaling, prevented NEPC formation. These results provide a molecular basis for the roles of miR-708 and EZH2 in NE differentiation in PC and highlight a new paradigm in NEPC formation and survival.

13.
Front Oncol ; 9: 1328, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921621

RESUMEN

Triple-negative breast cancer (TNBC) accounts for ~15-20% of breast cancer (BC) and has a higher rate of early relapse and mortality compared to other subtypes. The Chemokine (C-C motif) ligand 5 (CCL5) and its signaling pathway have been linked to TNBC. We aimed to investigate the susceptibility and prognostic implications of genetic variation in CCL5 signaling genes in TNBC in the present study. We characterized variants in CCL5 and that of six other CCL5 signaling genes (CCND1, ZMIZ1, CASP8, NOTCH2, MAP3K21, and HS6ST3) among 1,082 unrelated Tunisian subjects (544 BC patients, including 196 TNBC, and 538 healthy controls), assessed the association of the variants with BC-specific overall survival (OVS) and progression-free survival (PFS), and correlated CCL5 mRNA and serum levels with CCL5 genotypes. We found a highly significant association between the CCND1 rs614367-TT genotype (OR = 5.14; P = 0.004) and TNBC risk, and identified a significant association between the rs614367-T allele and decreased PFS in TNBC. A decreased risk of lymph node metastasis was associated with the MAP3K21 rs1294255-C allele, particularly in rs1294255-GC (OR = 0.47; P = 0.001). CCL5 variants (rs2107538 and rs2280789) were linked to CCL5 serum and mRNA levels. In the TCGA TNBC/Basal-like cohort the MAP3K21 rs1294255-G allele was associated with a decreased OVS. High expression of CCL5 in breast tumors was significantly associated with an increased OVS in all BC patients, but particularly in TNBC/Basal-like patients. In conclusion, genetic variation in CCL5 signaling genes may predict not only TNBC risk but also disease aggressiveness.

14.
PLoS One ; 13(4): e0194842, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29652911

RESUMEN

Genetic variation is an important determinant affecting either drug response or susceptibility to adverse drug reactions. Several studies have highlighted the importance of ethnicity in influencing drug response variability that should be considered during drug development. Our objective is to characterize the genetic variability of some pharmacogenes involved in the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Pharmacogenes (VIP) involved in MetS drug response were extracted from the genotyping data. Analysis of variant distribution in Tunisian population compared to 20 worldwide populations publicly available was performed using R software packages. Common variants between Tunisians and the 20 investigated populations were extracted from genotyping data. Multidimensional screening showed that Tunisian population is clustered with North African and European populations. The greatest divergence was observed with the African and Asian population. In addition, we performed Inter-ethnic comparison based on the genotype frequencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662, rs1045642, rs7294 and rs12255372 located respectively in HMGCR, ABCB1, VKORC1 and TCF7L2 are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype frequency of the variant rs776746 located in CYP3A5 gene is similar between Tunisian and African populations and different from CEU and TSI. The present study shows that the genetic make up of the Tunisian population is relatively complex in regard to pharmacogenes and reflects previous historical events. It is important to consider this ethnic difference in drug prescription in order to optimize drug response to avoid serious adverse drug reactions. Taking into account similarities with other neighboring populations, our study has an impact not only on the Tunisian population but also on North African population which are underrepresented in pharmacogenomic studies.


Asunto(s)
Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/genética , Farmacogenética , Variantes Farmacogenómicas , Alelos , Bases de Datos Factuales , Femenino , Frecuencia de los Genes , Variación Genética , Genotipo , Humanos , Masculino , Síndrome Metabólico/epidemiología , Grupos de Población/genética , Vigilancia de la Población , Túnez/epidemiología
15.
J Transl Med ; 15(1): 260, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29268752

RESUMEN

BACKGROUND: Prostate cancer (PCa) is a complex disorder resulting from the combined effects of multiple environmental and genetic factors. Small non-coding RNAs (sRNAs), particularly microRNAs (miRNAs), regulate several cellular processes and have an important role in many human malignancies including PCa. We assessed the sRNA profiles associated with PCa in Arabs, a population that has rarely been studied. METHODS: We used next generation sequencing technology to obtain the entire sRNA transcriptome of primary prostate tumor formalin-fixed paraffin-embedded tissues, and their paired non-tumor tissues, collected from Bedouin patients (Qatari and Saudi). The miRNA and the target gene expression were evaluated by real-time quantitative PCR. miRNA KEGG pathway and miRNA target genes were subsequently analyzed by starBase and TargetScan software. RESULTS: Different expression patterns of several sRNA and miRNA editing were revealed between PCa tumor and their paired non-tumor tissues. Our study identified four miRNAs that are strongly associated with prostate cancer, which have not been reported previously. Differentially expressed miRNAs significantly affect various biological pathways, such as cell cycle, endocytosis, adherence junction and pathways involved in cancer. Prediction of potential targets for the identified miRNAs indicates the overexpression of KRAS, BCL2 and down-regulation of PTEN in PCa tumor tissues. CONCLUSION: These miRNAs, newly associated with prostate cancer, may represent not only markers for the increased risk of PCa in Arabs, but may also reflect the clinical and pathological diversity as well as the ethno-specific heterogeneity of prostate cancer.


Asunto(s)
Árabes/genética , Neoplasias de la Próstata/genética , ARN no Traducido/genética , Transcriptoma/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Edición de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo
16.
J Transl Med ; 15(1): 139, 2017 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-28623955

RESUMEN

Many cancers, including breast cancer, have demonstrated prognosis and support advantages thanks to the discovery of targeted therapies. The advent of these new approaches marked the rise of precision medicine, which leads to improve the diagnosis, prognosis and treatment of cancer. Precision medicine takes into account the molecular and biological specificities of the patient and their tumors that will influence the treatment determined by physicians. This new era of medicine is accessible through molecular genetics platforms, the development of high-speed sequencers and means of analysis of these data. Despite the spectacular results in the treatment of cancers including breast cancer, described in this review, not all patients however can benefit from this new strategy. This seems to be related to the many genetic mutations, which may be different from one patient to another or within the same patient. It comes to give new impetus to the research-both from a technological and biological point of view-to make the hope of precision medicine accessible to all.


Asunto(s)
Neoplasias de la Mama/terapia , Medicina de Precisión , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/inmunología , Vacunas contra el Cáncer/inmunología , Femenino , Heterogeneidad Genética , Humanos , Inmunoterapia , Células Madre Neoplásicas/patología
17.
Cell Res ; 25(5): 588-603, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25916550

RESUMEN

Tumor initiation and growth depend on its microenvironment in which cancer-associated fibroblasts (CAFs) in tumor stroma play an important role. Prostaglandin E2 (PGE2) and interleukin (IL)-6 signal pathways are involved in the crosstalk between tumor and stromal cells. However, how PGE2-mediated signaling modulates this crosstalk remains unclear. Here, we show that microRNA (miR)-149 links PGE2 and IL-6 signaling in mediating the crosstalk between tumor cells and CAFs in gastric cancer (GC). miR-149 inhibited fibroblast activation by targeting IL-6 and miR-149 expression was substantially suppressed in the CAFs of GC. miR-149 negatively regulated CAFs and their effect on GC development both in vitro and in vivo. CAFs enhanced epithelial-to-mesenchymal transition (EMT) and the stem-like properties of GC cells in a miR-149-IL-6-dependent manner. In addition to IL-6, PGE2 receptor 2 (PTGER2/EP2) was revealed as another potential target of miR-149 in fibroblasts. Furthermore, H. pylori infection, a leading cause of human GC, was able to induce cyclooxygenase-2 (COX-2)/PGE2 signaling and to enhance PGE2 production, resulting in the hypermethylation of miR-149 in CAFs and increased IL-6 secretion. Our findings indicate that miR-149 mediates the crosstalk between tumor cells and CAFs in GC and highlight the potential of interfering miRNAs in stromal cells to improve cancer therapy.


Asunto(s)
Dinoprostona/metabolismo , Epigénesis Genética/genética , Fibroblastos/metabolismo , Interleucina-6/metabolismo , MicroARNs/metabolismo , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Fibroblastos/enzimología , Helicobacter pylori/patogenicidad , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología
18.
Front Biosci (Landmark Ed) ; 19(3): 528-34, 2014 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-24389200

RESUMEN

CRKL, as a "switch" factor on several oncogenic pathways, plays vital roles in multiple cancers. However, little is known about CRKL in gastrointestinal cancers. Here, we showed that CRKL is involved in colon cancer, which is the most common form of cancer of the digestive system. Immunohistochemistry analysis showed that CRKL expression in colon tumor tissue is significantly higher than normal tissue and CRKL level is associated with tumor differentiation. Suppression of CRKL in colon cancer cells inhibited cell proliferation, migration and invasion, while induced apoptosis. Colon cancer cells xenografts in nude mice showed that CRKL promoted tumorigenesis. Our results suggest that CRKL has the ability to regulate colon cancer malignancy and CRKL has the potential to serve as a diagnosis and prognosis marker and a therapy target of colon cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Carcinogénesis , Neoplasias del Colon/metabolismo , Regulación hacia Abajo , Proteínas Nucleares/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Línea Celular Tumoral , Neoplasias del Colon/patología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Nucleares/genética
19.
Front Biosci (Landmark Ed) ; 18(3): 919-27, 2013 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-23747857

RESUMEN

ITPKC, a susceptibility gene of Kawasaki disease, encodes a kinase that negatively regulates intracellular Ca2+ level and inhibits calcineurin-dependent activation of NFAT by phosphorylating IP3. In this study, we identified a novel ITPKC-interacting protein, namely PPP3CC, using yeast two-hybrid. This interaction was further confirmed by GST pull-down and co-immunoprecipitation assays, and fluorescent microscopy showed co-localization of both proteins in the cell cytoplasm. Our functional studies demonstrated that PPP3CC positively influences the protein level of ITPKC, likely by inhibiting phosphorylation of ITPKC and consequently preventing ITPKC from ubiquitin-mediated protein degradation which requires phosphorylation. Importantly, the protein level of PPP3CC negatively correlates with the cellular level of IP3, suggesting a regulatory role of PPP3CC in the IP3-Ca2+ signaling pathway.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Bases , Cartilla de ADN , Células HEK293 , Células HeLa , Humanos , Fosforilación , Proteolisis , Técnicas del Sistema de Dos Híbridos
20.
Cell Mol Biol Lett ; 18(2): 297-314, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23666597

RESUMEN

PTPN4 is a widely expressed non-receptor protein tyrosine phosphatase. Although its overexpression inhibits cell growth, the proteins with which it interacts to regulate cell growth are unknown. In this study, we identified CrkI as a PTPN4-interacting protein using a yeast two-hybrid, and confirmed this interaction using in vitro GST pull-down and co-immunoprecipitation and co-localization assays. We further determined the interactional regions as the SH3 domain of CrkI and the proline-rich region between amino acids 462 and 468 of PTPN4. Notably, overexpression of PTPN4 inhibits CrkI-mediated proliferation and wound healing of HEK293T cells, while knockdown of PTPN4 by siRNA in Hep3B cells enhances CrkI-mediated cell growth and motility. Moreover, our data show that ectopic expression of PTPN4 reduces the phosphorylation level of CrkI in HEK293T cells. These findings suggest that PTPN4 negatively regulates cell proliferation and motility through dephosphorylation of CrkI.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 4/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Secuencia de Aminoácidos , Movimiento Celular , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 4/química , Interferencia de ARN , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...