Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 19247-19253, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591143

RESUMEN

Two-dimensional (2D) transitional metal dichalcogenides (TMDs) have garnered significant attention due to their potential for next-generation electronics, which require device scaling. However, the performance of TMD-based field-effect transistors (FETs) is greatly limited by the contact resistance. This study develops an effective strategy to optimize the contact resistance of WSe2 FETs by combining contact doping and 2D metallic electrode materials. The contact regions were doped using a laser, and the metallic TaSe2 flakes were stacked on doped WSe2 as electrodes. Doping the contact areas decreases the depletion width, while introducing the TaSe2 contact results in a lower Schottky barrier. This method significantly improves the electrical performance of the WSe2 FETs. The doped WSe2/TaSe2 contact exhibits an ultralow Schottky barrier height of 65 meV and a contact resistance of 11 kΩ·µm, which is a 50-fold reduction compared to the conventional Cr/Au contact. Our method offers a way on fabricating high-performance 2D FETs.

2.
RSC Adv ; 13(26): 18099-18107, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37323440

RESUMEN

Interlayer excitons (ILEs) in the van der Waals (vdW) heterostructures of type-II band alignment transition metal dichalcogenides (TMDCs) have attracted significant interest owing to their unique exciton properties and potential in quantum information applications. However, the new dimension that emerges with the stacking of structures with a twist angle leads to a more complex fine structure of ILEs, presenting both an opportunity and a challenge for the regulation of the interlayer excitons. In this study, we report the evolution of interlayer excitons with the twist angle in the WSe2/WS2 heterostructure and identify the direct (indirect) interlayer excitons by combining photoluminescence (PL) and density functional theory (DFT) calculations. Two interlayer excitons with opposite circular polarization assigned to the different transition paths of K-K and Q-K were observed. The nature of the direct (indirect) interlayer exciton was confirmed by circular polarization PL measurement, excitation power-dependent PL measurement and DFT calculations. Furthermore, by applying an external electric field to regulate the band structure of the WSe2/WS2 heterostructure and control the transition path of the interlayer excitons, we could successfully realize the regulation of interlayer exciton emission. This study provides more evidence for the twist-angle-based control of heterostructure properties.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36903711

RESUMEN

Two-dimensional (2D) materials and their van der Waals stacked heterostructures (vdWH) are becoming the rising and glowing candidates in the emerging flexible nanoelectronics and optoelectronic industry. Strain engineering proves to be an efficient way to modulate the band structure of 2D materials and their vdWH, which will broaden understanding and practical applications of the material. Therefore, how to apply desired strain to 2D materials and their vdWH is of great importance to get the intrinsic understanding of 2D materials and their vdWH with strain modulation. Here, systematic and comparative studies of strain engineering on monolayer WSe2 and graphene/WSe2 heterostructure are studied by photoluminescence (PL) measurements under uniaxial tensile strain. It is found that contacts between graphene and WSe2 interface are improved, and the residual strain is relieved through the pre-strain process, which thus results in the comparable shift rate of the neutral exciton (A) and trion (AT) of monolayer WSe2 and graphene/WSe2 heterostructure under the subsequent strain release process. Furthermore, the PL quenching occurred when the strain is restored to the original position also indicates the pre-strain process to 2D materials, and their vdWH is important and necessary for improving the interface contacts and reducing the residual strain. Thus, the intrinsic response of the 2D material and their vdWH under strain can be obtained after the pre-strain treatment. These findings provide a quick, fast and efficient way to apply desired strain and also have important significance in guiding the use of 2D materials and their vdWH in the field of flexible and wearable devices.

4.
Cell Metab ; 33(10): 1974-1987.e9, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34270929

RESUMEN

Electron transport chain (ETC) dysfunction or hypoxia causes toxic NADH accumulation. How cells regenerate NAD+ under such conditions remains elusive. Here, integrating bioinformatic analysis and experimental validation, we identify glycerol-3-phosphate (Gro3P) biosynthesis as an endogenous NAD+-regeneration pathway. Under genetic or pharmacological ETC inhibition, disrupting Gro3P synthesis inhibits yeast proliferation, shortens lifespan of C. elegans, impairs growth of cancer cells in culture and in xenografts, and causes metabolic derangements in mouse liver. Moreover, the Gro3P shuttle selectively regenerates cytosolic NAD+ under mitochondrial complex I inhibition; enhancing Gro3P synthesis promotes shuttle activity to restore proliferation of complex I-impaired cells. Mouse brain has much lower levels of Gro3P synthesis enzymes as compared with other organs. Strikingly, enhancing Gro3P synthesis suppresses neuroinflammation and extends lifespan in the Ndufs4-/- mice. Collectively, our results reveal Gro3P biosynthesis as an evolutionarily conserved coordinator of NADH/NAD+ redox homeostasis and present a therapeutic target for mitochondrial complex I diseases.


Asunto(s)
Enfermedades Mitocondriales , NAD , Animales , Caenorhabditis elegans/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Glicerol/metabolismo , Humanos , Ratones , NAD/metabolismo , Oxidación-Reducción , Fosfatos/metabolismo
5.
Nanoscale ; 12(3): 1958-1966, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31909408

RESUMEN

Monolayer MoS2 is a direct bandgap semiconductor which is believed to be one of the most promising candidates for optoelectronic devices. Chemical vapor deposition (CVD) is the most popular method to synthesize monolayer MoS2 with a large area. However, many defects are always found in monolayer MoS2 grown by CVD, such as sulfur vacancies, which severely degrade the performance of devices. This work demonstrates a concise and effective method for direct growth of high quality monolayer MoS2 by using SiO2/Si substrates pretreated with sulfur vapor. The MoS2 monolayer obtained using this method shows about 20 times PL intensity enhancement and a much narrower PL peak width than that grown on untreated substrates. Detailed characterization studies reveal that MoS2 grown on sulfur vapor pretreated SiO2/Si substrates has a much lower density of sulfur vacancies. The synthesis of monolayer MoS2 with high optical quality and low defect concentration is critical for both fundamental physics studies and potential practical device applications in the atomically thin limit.

6.
ACS Appl Mater Interfaces ; 11(46): 43330-43336, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31659890

RESUMEN

Two-dimensional heterojunctions exhibit many unique features in nanoelectronic and optoelectronic devices. However, heterojunction engineering requires a complicated alignment process and some defects are inevitably introduced during material preparation. In this work, a laser scanning technique is used to construct a lateral WSe2 p-n junction. The laser-scanned region shows p-type behavior, and the adjacent region is electrically n-doped with a proper gate voltage. The laser-oxidized product WOx is found to be responsible for this p-type doping. After laser scanning, WSe2 displays a change from ambipolar to unipolar p-type property. A significant photocurrent emerges at the p-n junction. Therefore, a self-powered WSe2 photodetector can be fabricated based on this junction, which presents a large photoswitching ratio of 106, a high photoresponsivity of 800 mA W-1, and a short photoresponse time with long-term stability and reproducibility. Therefore, this selective laser-doping method is prospective in future electronic applications.

7.
J Nanosci Nanotechnol ; 19(5): 2851-2855, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30501790

RESUMEN

In this study, we have realized controllable fabrication of gold nanopatterns on pristine monolayer graphene by using nanosphere lithography, in which polystyrene (PS) spheres are used as templates. With this method, periodically ordered triangular Au nanopatterns are uniformly formed on graphene surface. Micro-Raman spectroscopy shows that these sacrificial PS templates have no obvious effect on graphene surface structure while the subsequently formed Au nanopatterns are found to enhance Raman intensity of G and 2D bands by surface plasmon resonance. The compressive stress introduced in the metal deposition process leads to an obvious blue shift of 2D band. Besides, the metal-induced doping effect reduces the intensity ratio between 2D and G bands. This uniform arrangement of metal nanostructure is expected to grow other nanomaterials or used as Raman enhancement substrate in biomedicine, catalyzer and optics areas.

8.
Anal Bioanal Chem ; 409(12): 3211-3222, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28251292

RESUMEN

Stroke is a major cause of mortality and long-term disability worldwide. The study of biomarkers and pathogenesis is vital for early diagnosis and treatment of stroke. In the present study, a continuous-flow normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry (NP/RP 2D LC-QToF/MS) method was employed to measure lipid species in human plasma, including healthy controls and lacunar infarction (LI) patients. As a result, 13 lipid species were demonstrated with significant difference between the two groups, and a "plasma biomarker model" including glucosylceramide (38:2), phosphatidylethanolamine (35:2), free fatty acid (16:1), and triacylglycerol (56:5) was finally established. This model was evaluated as an effective tool in that area under the receiver operating characteristic curve reached 1.000 in the discovery set and 0.947 in the validation set for diagnosing LI patients from healthy controls. Besides, the sensitivity and specificity of disease diagnosis in validation set were 93.3% and 96.6% at the best cutoff value, respectively. This study demonstrates the promising potential of NP/RP 2D LC-QToF/MS-based lipidomics approach in finding bio-markers for disease diagnosis and providing special insights into the metabolism of stroke induced by small vessel disease. Graphical abstract Flow-chart of the plasma biomarker model establishment through biomarker screening and validation.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Lípidos/sangre , Espectrometría de Masas/métodos , Accidente Vascular Cerebral Lacunar/sangre , Anciano , Biomarcadores/sangre , Cromatografía Liquida/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Accidente Vascular Cerebral Lacunar/diagnóstico
9.
J Sep Sci ; 39(19): 3745-3753, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27510466

RESUMEN

Glycerolipid is a main component of membranes in oxygenic photosynthetic organisms. Up to now, the majority of publication in this area has focused on the physiological functions of glycerolipids and lipoprotein complexes in photosynthesis, but the study on the separation and identification of glycerolipids in thylakoid membrane in cyanobacteria is relatively rare. Here we report a new method to separate and identify five photosynthetic glycerolipid classes, including monoglucosyl diacylglycerol, monogalactosyl diacylglycerol, digalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol, in cyanobacteria Synechococcus sp. PCC 7002 by two-dimensional (normal- and reversed-phase) liquid chromatography online coupled to quadrupole time-of-flight mass spectrometry. Over twice as many lipid species were detected by our method compared to the previously reported methods. Ten new odd-chain fatty acid glycerolipids were discovered for the first time. Moreover, complete separation of isomers of monogalactosyl diacylglycerol and monoglucosyl diacylglycerol was achieved. According to the tandem mass spectrometry results, we found that the head group of monoglucosyl diacylglycerols was not as stable as that of monogalactosyl diacylglycerols, which might explain why the organism chose monogalactosyl diacylglycerols and digalactosyl diacylglycerols instead of monoglucosyl diacylglycerols as the main content of the photosynthetic membranes in the history of evolution. This work will benefit further research on the physiological function of glycerolipids.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glucolípidos/química , Espectrometría de Masas/métodos , Synechococcus/química , Glucolípidos/metabolismo , Estructura Molecular , Synechococcus/metabolismo
10.
J Sep Sci ; 39(1): 38-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26394722

RESUMEN

Lipidomics is an important branch of metabolomics, which aims at the detailed analysis of lipid species and their multiple roles in the living system. In recent years, the development of various analytical methods for effective identification and characterization of lipids has greatly promoted the process of lipidomics. Meanwhile, as many diseases demonstrate a remarkable alteration in lipid profiles compared with that of healthy people, lipidomics has been extensively introduced to disease research. The comprehensive lipid profiling provides a chance to discover novel biomarkers for specific disease. In addition, it plays a crucial role in the study of lipid metabolism, which could illuminate the pathogenesis of diseases. In this review, after brief discussion of analytical methods for lipidomics in clinical research, we focus on the recent advances of lipidomics related to four types of diseases, including cancer, atherosclerosis, diabetes mellitus, and Alzheimer's disease.


Asunto(s)
Metabolismo de los Lípidos , Lípidos/química , Metabolómica/métodos , Enfermedad de Alzheimer/metabolismo , Aterosclerosis/metabolismo , Humanos , Metabolómica/instrumentación , Metabolómica/tendencias , Neoplasias/metabolismo
11.
J Chromatogr A ; 1265: 24-30, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23062977

RESUMEN

In this work, a novel type of magnetic polymer particle, magnetic poly(diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) [Fe(3)O(4)@p(DEVP-co-EDMA)], was successfully synthesized and applied for the extraction and determination of chlorophenols in water samples by coupling with high-performance liquid chromatography (HPLC). Fe(3)O(4)@p(DEVP-co-EDMA) was synthesized by a simple seeded radical polymerization method and exhibited well-defined core-shell structure and good magnetic response ability. In addition, the magnetic polymer had the advantages of abundant adsorption sites and high enrichment efficiency. Due to the presence of PO group in the skeleton of polymer, the magnetic polymer material displayed excellent extraction performance for chlorophenols, such as 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). Hydrophobic skeleton of the magnetic polymer also provided strong interaction with the target analytes, especially pentachlorophenol (PCP) which is a kind of non-polar chlorophenol. Desorption solution, pH of water sample, extraction time and desorption time, the amount of adsorbent, and the volume of desorption solution were optimized. Under the optimized conditions, the linear ranges of four chlorophenols were 2-500 ng/mL with the limits of detection (S/N=3) ranging from 0.20 to 0.34 ng/mL. The repeatability was investigated by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) lower than 15.0%. The recoveries for real water samples were in the range of 92.7-108.0%. Collectively, the results indicated that the novel Fe(3)O(4)@p(DEVP-co-EDMA) was successfully applied in the extraction and detection of chlorophenols from water samples, and the magnetic polymer particle showed potential applications in the analysis of polar compounds.


Asunto(s)
Acrilatos/análisis , Acrilatos/química , Clorofenoles/análisis , Glicoles de Etileno/análisis , Glicoles de Etileno/química , Magnetismo , Adsorción , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Reproducibilidad de los Resultados , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...