Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Se Pu ; 42(7): 721-729, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-38966980

RESUMEN

Lysine (K) is widely used in the design of lysine-targeted crosslinkers, structural elucidation of protein complexes, and analysis of protein-protein interactions. In "shotgun" proteomics, which is based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), proteins from complex samples are enzymatically digested, generating thousands of peptides and presenting significant challenges for the direct analysis of K-containing peptides. In view of the lack of effective methods for the enrichment of K-containing peptides, this work developed a method which based on a hydrophobic-tag-labeling reagent C10-S-S-NHS and reversed-phase chromatography (termed as HYTARP) to achieve the efficient enrichment and identification of K-containing peptides from complex samples. The C10-S-S-NHS synthesized in this work successfully labeled standard peptides containing various numbers of K and the labeling efficiency achieved up to 96% for HeLa cell protein tryptic digests. By investigating the retention behavior of these labeled peptides in C18 RP column, we found that most K-labeled peptides were eluted once when acetonitrile percentage reached 57.6% (v/v). Further optimization of the elution gradient enabled the efficient separation and enrichment of the K-labeled peptides in HeLa digests via a stepwise elution gradient. The K-labeled peptides accounted for 90% in the enriched peptides, representing an improvement of 35% compared with the number of peptides without the enrichment. The dynamic range of proteins quantified from the enriched K-containing peptides spans 5-6 orders of magnitude, and realized the detection of low-abundance proteins in the complex sample. In summary, the HYTARP strategy offers a straightforward and effective approach for reducing sample complexity and improving the identification coverage of K-containing peptides and low-abundance proteins.


Asunto(s)
Cromatografía de Fase Inversa , Interacciones Hidrofóbicas e Hidrofílicas , Lisina , Péptidos , Cromatografía de Fase Inversa/métodos , Lisina/química , Péptidos/química , Péptidos/análisis , Humanos , Células HeLa , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos
2.
J Chromatogr A ; 1730: 465064, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38865749

RESUMEN

Small ubiquitin-like modifier (SUMO) modification regulates various eukaryotic cellular processes and plays a pivotal role in interferon (IFN)-mediated antiviral defense. While immunoprecipitation enrichment method is widely used for proteome-wide analysis of endogenous SUMOylation, the inability to target all SUMO forms and high cost of antibodies limited its further application. Herein, we proposed an antibody-free enrichment method based on SUMO-specific protease and strong anion exchange chromatography (SPAX) to globally profile the endogenous SUMOylation. The SUMO1/2/3-modified peptides could be simultaneously enriched by SAX chromatography by utilizing its electrostatic interaction with SUMO1/2/3 remnants, which contained multiple aspartic acids (D) and glutamic acids (E). To remove the co-enriched D/E-containing peptides which might interfere with the detection of low-abundance SUMOylated peptides, SUMO-specific protease was used to cleave the SUMO1/2/3 remnants from enriched SUMOylated peptides. As the deSUMOylated peptides lost SUMO remnants, their interaction with SAX materials became weaker, and the D/E-containing peptides could thus be depleted through the second SAX separation. The SPAX method identified over twice the SUMOylated sites than using SAX method only, greatly improving the identification coverage of endogenous SUMOylated sites. Our strategy was then applied to the site-specific identification and quantification of endogenous SUMOylation in A549 cells stimulated by IFN-γ for the first time. A total of 226 SUMOylated sites on 146 proteins were confidently identified, among which multiple up-regulated sites were involved in IFN-mediated antiviral defense, demonstrating the great promise of SPAX to globally profile and discover endogenous SUMOylation with significant biological functions.


Asunto(s)
Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación , Humanos , Cromatografía por Intercambio Iónico/métodos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Proteína SUMO-1/metabolismo , Proteína SUMO-1/química , Péptidos/química , Péptidos/análisis , Péptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...