Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 283: 116952, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39217895

RESUMEN

Prolonged inhalation of environmental crystalline silica (CS) can cause silicosis, characterized by persistent pulmonary inflammation and irreversible fibrosis, but the mechanism has not been elucidated. To uncover the role and underlying mechanism of glycolytic reprogramming in CS-induced pulmonary inflammation, the mouse silicosis models and glycolysis inhibition models were established in vivo. And the CS-induced macrophage activation models were utilized to further explore the underlying mechanism in vitro. The results showed that CS induced lung inflammation accompanied by glycolytic reprogramming and pyroptosis. The application of glycolysis inhibitor (2-DG) suppressed CS-induced pyroptosis and alleviated lung inflammation. In vitro, 2-DG effectively impeded CS-induced macrophage pyroptosis and inflammatory response. Mechanistically, 2-DG suppressed pyroptosis by inhibiting NLRP3 inflammasome activation both in vivo and in vitro. Furtherly, metabolite lactate facilitated NLRP3-dependent pyroptosis synergistically with CS particles, while blocking the source of lactate largely alleviated NLRP3 inflammasome activation and subsequent pyroptosis triggered by CS. More profoundly, the increment of lactate induced by CS might drive NLRP3-dependent pyroptosis by increasing histone lactylation levels. In conclusion, our findings demonstrated inhibiting glycolytic reprogramming could alleviate CS-induced inflammatory response through suppressing NLRP3 -dependent pyroptosis. Increased glycolytic metabolite lactate and protein lactylation modifications might represent significant mechanisms during CS-induced NLRP3 activation and macrophage pyroptosis.


Asunto(s)
Glucólisis , Inflamación , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Dióxido de Silicio , Piroptosis/efectos de los fármacos , Animales , Glucólisis/efectos de los fármacos , Dióxido de Silicio/toxicidad , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación/inducido químicamente , Ratones Endogámicos C57BL , Silicosis/patología , Silicosis/metabolismo , Inflamasomas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Modelos Animales de Enfermedad
2.
Environ Pollut ; 359: 124727, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147227

RESUMEN

The mechanisms underlying relationships between ambient air pollution and chronic obstructive pulmonary disease (COPD) risk remained largely uncertain. In this study, we aim to evaluate whether metabolic signature comprising multiple circulating metabolites can characterize metabolic response to the multiple air pollution; and to assess whether the identified metabolic signature contribute to COPD risk. A total of 227,962 participants with complete data were included from the UK biobank study. Concentrations of nitrogen dioxide (NO2), nitrogen oxides (NOx), and particulate matter (PM2.5 and PM10) were evaluated by land-use regression models. We newly computed an air pollution score to reflect joint exposure to multiple air pollutants. Circulating metabolome was quantified by nuclear magnetic resonance (NMR) spectroscopy. During a median of 12.78 years of follow-up, a total of 8685 incident COPD cases were documented. After multiple correction, the Cox regression models showed that 102 of 143 metabolites were significantly associated with COPD risk. Utilizing elastic net regularized regressions, we identified a metabolic signature comprising 106 metabolites (including lipid, fatty acids, glycolysis and amino acids et al.) were robustly related to air pollution score. In the multivariate-adjusted Cox regression models, the derived metabolic signature showed a positive correlation with incident COPD [HR per SD = 1.20 (95% CI: 1.17-1.22)]. Casual mediation analysis further noted that the constructed metabolic signature mediated 10.5 % (8.3%-13.1%) of the air pollution-COPD associations. Taken together, our findings identified a metabolic signature that captured metabolic response to various air pollutants exposure jointly, and predicted future COPD risk independent of known risk factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Metabolómica , Material Particulado , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Humanos , Estudios Prospectivos , Masculino , Persona de Mediana Edad , Femenino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Anciano , Incidencia , Dióxido de Nitrógeno , Adulto , Óxidos de Nitrógeno
3.
Sci Total Environ ; 949: 174976, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047838

RESUMEN

Environmental exposure to crystalline silica (CS) particles is common and occurs during natural, industrial, and agricultural activities. Prolonged inhalation of CS particles can cause silicosis, a serious and incurable pulmonary fibrosis disease. However, the underlying mechanisms remain veiled. Herein, we aim to elucidate the novel mechanisms of interleukin-11 (IL-11) driving fibroblast metabolic reprogramming during the development of silicosis. We observed that CS exposure induced lung fibrosis in mice and activated fibroblasts, accompanied by increased IL-11 expression and metabolic reprogramming switched from mitochondrial respiration to glycolysis. Besides, we innovatively uncovered that elevated IL-11 promoted the glycolysis process, thereby facilitating the fibroblast-myofibroblast transition (FMT). Mechanistically, CS-stimulated IL-11 activated the extracellular signal-regulated kinase (ERK) pathway and the latter increased the expression of hypoxia inducible factor-1α (HIF-1α) via promoting the translation and delaying the degradation of the protein. HIF-1α further facilitated glycolysis, driving the FMT process and ultimately the formation of silicosis. Moreover, either silence or neutralization of IL-11 inhibited glycolysis augmentation and attenuated CS-induced lung myofibroblast generation and fibrosis. Overall, our findings elucidate the role of IL-11 in promoting fibroblast metabolic reprogramming through the ERK-HIF-1α axis during CS-induced lung fibrosis, providing novel insights into the molecular mechanisms and potential therapeutic targets of silicosis.


Asunto(s)
Fibroblastos , Interleucina-11 , Reprogramación Metabólica , Fibrosis Pulmonar , Dióxido de Silicio , Animales , Ratones , Fibroblastos/efectos de los fármacos , Glucólisis , Interleucina-11/metabolismo , Reprogramación Metabólica/efectos de los fármacos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Dióxido de Silicio/toxicidad , Silicosis/metabolismo
4.
Environ Sci Pollut Res Int ; 31(25): 36910-36924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758446

RESUMEN

Silicosis is an occupational lung disease because of exposure to silica dust in the workplace. Evidence on the spatiotemporal change of silicosis burden worldwide remains limited. This study utilized data extracted from the Global Burden of Disease Study 2019 to examine the numbers and age-standardized rates of incidence (ASIR), mortality (ASMR), and disability-adjusted life years (DALYs) caused by silicosis between 1990 and 2019. Average annual percentage changes (AAPCs) were calculated to evaluate the temporal trends of age-standardized indicators by sex, region, and socio-demographic index (SDI) since 1990. Results indicated an increase in new silicosis cases globally, rising by 64.61% from 84,426 in 1990 to 138,971 in 2019, with a sustained high number of DALYs attributed to this disease. Although the global age-standardized rates of incidence, mortality, and DALYs of silicosis have decreased since 1990, the number of new cases has increased in 168 countries and territories, and the ASIR of silicosis has also risen in 118 countries and territories, primarily in developing countries. Since 1990, the burden of silicosis among the elderly has significantly increased. Countries with higher SDI experienced a more rapid decline in the silicosis burden. Silicosis remains a public health problem that requires significant attention. Programs for prevention and elimination of this public health issue need to be established in more countries and territories. Protecting young workers from silica dust exposure is crucial to prevent the onset of silicosis in their later years and to reduce the disease burden among older workers.


Asunto(s)
Años de Vida Ajustados por Discapacidad , Carga Global de Enfermedades , Silicosis , Silicosis/epidemiología , Silicosis/mortalidad , Humanos , Incidencia , Masculino , Femenino , Salud Global , Años de Vida Ajustados por Calidad de Vida , Exposición Profesional
5.
J Hazard Mater ; 470: 134073, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552393

RESUMEN

Polychlorinated biphenyls (PCBs) are endocrine-disrupting chemicals that have been associated with various adverse health conditions. Herein we explored the associations of PCBs with dyslipidemia and further assessed the modification effect of genetic susceptibility and lifestyle factors. Six serum PCBs (PCB-28, 101, 118, 138, 153, 180) were determined in 3845 participants from the Wuhan-Zhuhai cohort. Dyslipidemia, including hyper-total cholesterol (HyperTC), hyper-triglyceride (HyperTG), hyper-low density lipoprotein cholesterol (HyperLDL-C), and hypo-high density lipoprotein cholesterol (HypoHDL-C) were determined, and lipid-specific polygenic risk scores (PRS) and healthy lifestyle score were constructed. We found that all six PCB congeners were positively associated with the prevalence of dyslipidemias, and ΣPCB level was associated with HyperTC, HyperTG, and HyperLDL-C in dose-response manners. Compared with the lowest tertiles of ΣPCB, the odds ratios (95% confidence intervals) in the highest tertiles were 1.490 (1.258, 1.765) for HyperTC, 1.957 (1.623, 2.365) for HyperTG, and 1.569 (1.316, 1.873) for HyperLDL-C, respectively. Compared with those with low ΣPCB, healthy lifestyle, and low genetic risk, participants with high ΣPCB, unfavorable lifestyle, and high genetic risk had the highest odds of HyperTC, HyperTG, and HyperLDL-C. Our study provided evidence that high PCB exposure exacerbated the association of genetic risk and unhealthy lifestyle with dyslipidemia.


Asunto(s)
Dislipidemias , Predisposición Genética a la Enfermedad , Estilo de Vida , Bifenilos Policlorados , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , China/epidemiología , Dislipidemias/epidemiología , Dislipidemias/inducido químicamente , Dislipidemias/genética , Pueblos del Este de Asia , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/sangre , Contaminantes Ambientales/toxicidad , Bifenilos Policlorados/sangre , Bifenilos Policlorados/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...