Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35886143

RESUMEN

This work developed an environmentally-friendly soil remediation method based on BC and g-C3N4, and demonstrated the technical feasibility of remediating petroleum-contaminated soil with biochar/graphite carbon nitride (BC/g-C3N4). The synthesis of BC/g-C3N4 composites was used for the removal of TPH in soil via adsorption and photocatalysis. BC, g-C3N4, and BC/g-C3N4 have been characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analyzer (BET), FT-IR, and X-ray diffraction (XRD). BC/g-C3N4 facilitates the degradation due to reducing recombination and better electron-hole pair separation. BC, g-C3N4, and BC/g-C3N4 were tested for their adsorption and photocatalytic degradation capacities. Excellent and promising results are brought out by an apparent synergism between adsorption and photocatalysis. The optimum doping ratio of 1:3 between BC and g-C3N4 was determined by single-factor experiments. The removal rate of total petroleum hydrocarbons (TPH) by BC/g-C3N4 reached 54.5% by adding BC/g-C3N4 at a dosing rate of 0.08 g/g in a neutral soil with 10% moisture content, which was 2.12 and 1.95 times of BC and g-C3N4, respectively. The removal process of TPH by BC/g-C3N4 conformed to the pseudo-second-order kinetic model. In addition, the removal rates of different petroleum components in soil were analyzed in terms of gas chromatography-mass spectrometry (GC-MS), and the removal rates of nC13-nC35 were above 90% with the contaminated soil treated by BC/g-C3N4. The radical scavenger experiments indicated that superoxide radical played the major role in the photocatalytic degradation of TPH. This work definitely demonstrates that the BC/g-C3N4 composites have great potential for application in the remediation of organic pollutant contaminated soil.


Asunto(s)
Petróleo , Carbón Orgánico , Hidrocarburos/análisis , Petróleo/análisis , Suelo/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
Ecotoxicol Environ Saf ; 203: 110945, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32684517

RESUMEN

The high-concentration wastewater produced in the industrial reverse osmosis (RO) process contains a large amount of refractory organic matters, which will have serious impacts on the natural environment and human health. Among them, contaminants can be transformed by humus-reducing bacteria based on humus. In this study, O3- assisted UV-Fenton method was applied as pretreatment. Biological activated carbon (BAC) technology in which humus-reducing bacteria were the dominant bacteria, enhanced by electron donor and Fe3+, was used to dispose of RO concentrate (ROC). The results showed that water treatment process combining oxidation with biological filtration had a positive effect on the removal of stubborn contaminants in ROC. The system was strengthened by adding electron donor and Fe3+, and the chemical oxygen demand (COD) removal efficiency was up to 80.1%. However, when the removal efficiency of UV254 absorbing pollutants reached optimal value (87.3%), that means only Fe3+ was added.


Asunto(s)
Carbón Orgánico/análisis , Compuestos Férricos/química , Sustancias Húmicas , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Filtración/métodos , Sustancias Húmicas/análisis , Sustancias Húmicas/microbiología , Hidrocarburos Halogenados/análisis , Peróxido de Hidrógeno/química , Hierro/química , Ósmosis , Oxidación-Reducción , Ozono/química , Rayos Ultravioleta , Aguas Residuales/análisis , Aguas Residuales/microbiología
3.
Water Sci Technol ; 80(10): 2003-2012, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32144232

RESUMEN

To remove NO3-N from water, coconut shell biochar (CSB) was modified by a solution of FeCl3, a solution of AlCl3 and a mixture solution of FeCl3 and AlCl3 respectively. The obtained modified biochar with the best effect of NO3-N adsorption was screened out to explore the adsorption behavior and mechanism of NO3-N removal by batch experiments and kinetics and thermodynamics and correlated characterization. The results indicated that the mixture solution of FeCl3- and AlCl3- modified CSB (Fe-Al/CSB) showed the best adsorption performance for NO3-N removal. Iron and aluminum elements existed on the surface of Fe-Al/CSB in the form of FeOOH, Fe2O3, Fe2+, and Al2O3 respectively. The adsorption process could reach equilibrium in 20 min. An acidic condition was favorable for NO3-N adsorption. The presence of coexisting anions was not conducive for NO3-N adsorption. The quasi-second-order model and Freundlich model could be well fitted in the adsorption process. The maximum adsorption capacity of Fe-Al/CSB fitted by the Langmuir model could reach 34.20 mg/g. The adsorption of NO3-N by Fe-Al/CSB was an endothermic and spontaneous process. Ligand exchange and chemical redox reaction were the NO3-N adsorption mechanisms which led to NO3-N adsorption by Fe-Al/CSB.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Adsorción , Carbón Orgánico , Cinética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...