Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
2.
Am J Physiol Renal Physiol ; 326(4): F644-F660, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420674

RESUMEN

Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.


Asunto(s)
Hipertensión , Enfermedades Renales , Podocitos , Humanos , Ratones , Animales , Anciano , Podocitos/metabolismo , Ratones Obesos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Fenotipo , Enfermedades Renales/metabolismo , Obesidad/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Desoxicorticosterona , Acetatos/metabolismo , ARN Mensajero/metabolismo
3.
Am J Physiol Renal Physiol ; 326(1): F120-F134, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855038

RESUMEN

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Podocitos , Persona de Mediana Edad , Humanos , Ratones , Animales , Anciano , Podocitos/metabolismo , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomérulos Renales/metabolismo , Enfermedades Renales/metabolismo , Envejecimiento , Doxorrubicina/toxicidad , Doxorrubicina/metabolismo
4.
Kidney360 ; 4(12): 1784-1793, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37950369

RESUMEN

As the population in many industrial countries is aging, the risk, incidence, and prevalence of CKD increases. In the kidney, advancing age results in a progressive decrease in nephron number and an increase in glomerulosclerosis. In this review, we focus on the effect of aging on glomerular podocytes, the post-mitotic epithelial cells critical for the normal integrity and function of the glomerular filtration barrier. The podocytes undergo senescence and transition to a senescence-associated secretory phenotype typified by the production and secretion of inflammatory cytokines that can influence neighboring glomerular cells by paracrine signaling. In addition to senescence, the aging podocyte phenotype is characterized by ultrastructural and functional changes; hypertrophy; cellular, oxidative, and endoplasmic reticulum stress; reduced autophagy; and increased expression of aging genes. This results in a reduced podocyte health span and a shortened life span. Importantly, these changes in the pathways/processes characteristic of healthy podocyte aging are also often similar to pathways in the disease-induced injured podocyte. Finally, the better understanding of podocyte aging and senescence opens therapeutic options to slow the rate of podocyte aging and promote kidney health.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Podocitos/metabolismo , Envejecimiento/metabolismo , Glomérulos Renales/metabolismo , Enfermedades Renales/metabolismo , Células Epiteliales
5.
Aging (Albany NY) ; 15(14): 6658-6689, 2023 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-37487005

RESUMEN

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.


Asunto(s)
Podocitos , Humanos , Animales , Ratones , Persona de Mediana Edad , Podocitos/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Glomérulos Renales/metabolismo , Envejecimiento
6.
Kidney Int ; 104(3): 455-462, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37290603

RESUMEN

The majority of podocyte disorders are progressive in nature leading to chronic kidney disease and often kidney failure. The scope of current therapies is typically nonspecific immunosuppressant medications, which are accompanied by unwanted and serious side effects. However, many exciting clinical trials are underway to reduce the burden of podocyte diseases in our patients. Major advances and discoveries have recently been made experimentally in our understanding of the molecular and cellular mechanisms underlying podocyte injury in disease. This begs the question of how best to take advantage of these impressive strides. One approach to consider is the repurposing of therapeutics that have already been approved by the Food and Drug Administration, European Medicines Agency, and other regulatory agencies for indications beyond the kidney. The advantages of therapy repurposing include known safety profiles, drug development that has already been completed, and overall reduced costs for studying alternative indications for selected therapies. The purpose of this mini review is to examine the experimental literature of podocyte damage and determine if there are mechanistic targets in which prior approved therapies can be considered for repurposing to podocyte disorders.


Asunto(s)
Podocitos , Insuficiencia Renal Crónica , Humanos , Preparaciones Farmacéuticas , Reposicionamiento de Medicamentos , Riñón , Insuficiencia Renal Crónica/tratamiento farmacológico
7.
Front Bioeng Biotechnol ; 10: 993872, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246374

RESUMEN

Interactions between fibroblasts and immune cells play an important role in tissue inflammation. Previous studies have found that eosinophils activated with interleukin-3 (IL-3) degranulate on aggregated immunoglobulin G (IgG) and release mediators that activate fibroblasts in the lung. However, these studies were done with eosinophil-conditioned media that have the capacity to investigate only one-way signaling from eosinophils to fibroblasts. Here, we demonstrate a coculture model of primary normal human lung fibroblasts (HLFs) and human blood eosinophils from patients with allergy and asthma using an open microfluidic coculture device. In our device, the two types of cells can communicate via two-way soluble factor signaling in the shared media while being physically separated by a half wall. Initially, we assessed the level of eosinophil degranulation by their release of eosinophil-derived neurotoxin (EDN). Next, we analyzed the inflammation-associated genes and soluble factors using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiplex immunoassays, respectively. Our results suggest an induction of a proinflammatory fibroblast phenotype of HLFs following the coculture with degranulating eosinophils, validating our previous findings. Additionally, we present a new result that indicate potential impacts of activated HLFs back on eosinophils. This open microfluidic coculture platform provides unique opportunities to investigate the intercellular signaling between the two cell types and their roles in airway inflammation and remodeling.

8.
Kidney Int ; 102(5): 966-968, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36272754

RESUMEN

Podocytes undergo defined morphologic changes during development, homeostasis, and aging, and on injury. Quantitative podometric assessments of podocyte endowment provide a powerful tool to interrogate glomerular health. Expanding this approach to a regional assessment demonstrates that the podocytes from cortical, subcortical, and juxtamedullary glomeruli are not only morphologically heterogeneous per se, but respond differently to stressors, such as age and hypertension. This suggests that zonal glomerular changes harbor critical information to understand glomerulopathies.


Asunto(s)
Hipertensión , Enfermedades Renales , Podocitos , Humanos , Glomérulos Renales
10.
J Clin Invest ; 132(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35968783

RESUMEN

With an aging population, kidney health becomes an important medical and socioeconomic factor. Kidney aging mechanisms are not well understood. We previously showed that podocytes isolated from aged mice exhibit increased expression of programmed cell death protein 1 (PD-1) surface receptor and its 2 ligands (PD-L1 and PD-L2). PDCD1 transcript increased with age in microdissected human glomeruli, which correlated with lower estimated glomerular filtration rate and higher segmental glomerulosclerosis and vascular arterial intima-to-lumen ratio. In vitro studies in podocytes demonstrated a critical role for PD-1 signaling in cell survival and in the induction of a senescence-associated secretory phenotype. To prove PD-1 signaling was critical to podocyte aging, aged mice were injected with anti-PD-1 antibody. Treatment significantly improved the aging phenotype in both kidney and liver. In the glomerulus, it increased the life span of podocytes, but not that of parietal epithelial, mesangial, or endothelial cells. Transcriptomic and immunohistochemistry studies demonstrated that anti-PD-1 antibody treatment improved the health span of podocytes. Administering the same anti-PD-1 antibody to young mice with experimental focal segmental glomerulosclerosis (FSGS) lowered proteinuria and improved podocyte number. These results suggest a critical contribution of increased PD-1 signaling toward both kidney and liver aging and in FSGS.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Anciano , Animales , Células Endoteliales/metabolismo , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Glomérulos Renales/metabolismo , Ratones , Podocitos/metabolismo , Transducción de Señal
12.
Kidney Int ; 102(1): 12-13, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35738826

RESUMEN

Regenerative repair following injury to proximal tubular epithelial cells (PTECs) is essential to restore the kidney to normal function in acute kidney injury. Failure to accomplish this leads to chronic kidney disease. Expression of the paired-box transcription factor Pax2 in PTECs is required for their regenerative proliferation and repair. However, a loss-of-function study now shows that the absence of Pax2 not only impacts PTEC proliferation but also causes myofibroblast recruitment leading to excessive tubulointerstitial fibrosis.


Asunto(s)
Lesión Renal Aguda , Factor de Transcripción PAX2 , Lesión Renal Aguda/patología , Animales , Células Epiteliales/metabolismo , Fibrosis , Riñón/metabolismo , Túbulos Renales Proximales/patología , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
13.
Kidney Int ; 101(5): 845-853, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35276204

RESUMEN

Acute kidney injury impacts âˆ¼13.3 million individuals and causes âˆ¼1.7 million deaths per year globally. Numerous injury pathways contribute to acute kidney injury, including cell cycle arrest, senescence, inflammation, mitochondrial dysfunction, and endothelial injury and dysfunction, and can lead to chronic inflammation and fibrosis. However, factors enabling productive repair versus nonproductive, persistent injury states remain less understood. The (Re)Building a Kidney (RBK) consortium is a National Institute of Diabetes and Digestive and Kidney Diseases consortium focused on both endogenous kidney repair mechanisms and the generation of new kidney tissue. This short review provides an update on RBK studies of endogenous nephron repair, addressing the following questions: (i) What is productive nephron repair? (ii) What are the cellular sources and drivers of repair? and (iii) How do RBK studies promote development of therapeutics? Also, we provide a guide to RBK's open access data hub for accessing, downloading, and further analyzing data sets.


Asunto(s)
Lesión Renal Aguda , Riñón , Lesión Renal Aguda/patología , Femenino , Fibrosis , Humanos , Inflamación/patología , Riñón/patología , Masculino , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Regeneración , Estados Unidos
14.
J Am Soc Nephrol ; 32(11): 2697-2713, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716239

RESUMEN

The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.


Asunto(s)
Envejecimiento/fisiología , Podocitos/citología , Adulto , Anciano , Animales , Autofagia , Restricción Calórica , Ciclo Celular , Forma de la Célula , Células Cultivadas , Senescencia Celular , Daño del ADN , Femenino , Expresión Génica , Humanos , Inflamasomas , Glomérulos Renales/citología , Glomérulos Renales/crecimiento & desarrollo , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Animales , Oligopéptidos/farmacología , Estrés Oxidativo , Podocitos/metabolismo , Ratas , Muerte Celular Regulada , Sirtuinas/metabolismo , Especificidad de la Especie , Adulto Joven
16.
Clin J Am Soc Nephrol ; 16(2): 319-327, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-32792352

RESUMEN

New treatments, new understanding, and new approaches to translational research are transforming the outlook for patients with kidney diseases. A number of new initiatives dedicated to advancing the field of nephrology-from value-based care to prize competitions-will further improve outcomes of patients with kidney disease. Because of individual nephrologists and kidney organizations in the United States, such as the American Society of Nephrology, the National Kidney Foundation, and the Renal Physicians Association, and international nephrologists and organizations, such as the International Society of Nephrology and the European Renal Association-European Dialysis and Transplant Association, we are beginning to gain traction to invigorate nephrology to meet the pandemic of global kidney diseases. Recognizing the timeliness of this opportunity, the American Society of Nephrology convened a Division Chief Retreat in Dallas, Texas, in June 2019 to address five key issues: (1) asserting the value of nephrology to the health system; (2) productivity and compensation; (3) financial support of faculty's and divisions' educational efforts; (4) faculty recruitment, retention, diversity, and inclusion; and (5) ensuring that fellowship programs prepare trainees to provide high-value nephrology care and enhance attraction of trainees to nephrology. Herein, we highlight the outcomes of these discussions and recommendations to the American Society of Nephrology.


Asunto(s)
Comités Consultivos , Becas/normas , Nefrólogos/economía , Nefrología/educación , Nefrología/organización & administración , Sociedades Médicas/organización & administración , Eficiencia , Docentes Médicos , Becas/economía , Humanos , Selección de Personal , Salarios y Beneficios
17.
Aging (Albany NY) ; 12(17): 17601-17624, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32858527

RESUMEN

Healthy aging is typified by a progressive and absolute loss of podocytes over the lifespan of animals and humans. To test the hypothesis that a subset of glomerular parietal epithelial cell (PEC) progenitors transition to a podocyte fate with aging, dual reporter PEC-rtTA|LC1|tdTomato|Nphs1-FLPo|FRT-EGFP mice were generated. PECs were inducibly labeled with a tdTomato reporter, and podocytes were constitutively labeled with an EGFP reporter. With advancing age (14 and 24 months) glomeruli in the juxta-medullary cortex (JMC) were more severely injured than those in the outer cortex (OC). In aged mice (24m), injured glomeruli with lower podocyte number (41% decrease), showed more PEC migration and differentiation to a podocyte fate than mildly injured or healthy glomeruli. PECs differentiated to a podocyte fate had ultrastructural features of podocytes and co-expressed the podocyte markers podocin, nephrin, p57 and VEGF164, but not markers of mesangial (Perlecan) or endothelial (ERG) cells. PECs differentiated to a podocyte fate did not express CD44, a marker of PEC activation. Taken together, we demonstrate that a subpopulation of PECs differentiate to a podocyte fate predominantly in injured glomeruli in mice of advanced age.

18.
Physiol Rep ; 8(15): e14545, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32786069

RESUMEN

Loss and dysfunction of glomerular podocytes result in increased macromolecule permeability through the glomerular filtration barrier and nephrotic syndrome. Current therapies can induce and maintain disease remission, but cause serious and chronic complications. Nanoparticle drug carriers could mitigate these side effects by delivering drugs to the kidneys more efficiently than free drug through tailoring of carrier properties. An important extrinsic factor of nanoparticle biodistribution is local pathophysiology, which may drive greater nanoparticle deposition in certain tissues. Here, we hypothesized that a "leakier" filtration barrier during glomerular kidney disease would increase nanoparticle distribution into the kidneys. We examined the effect of nanoparticle size and disease state on kidney accumulation in male BALB/c mice. The effect of size was tested using a panel of fluorescent polystyrene nanoparticles of size 20-200 nm, due to the relevance of this size range for drug delivery applications.Experimental focal segmental glomerulosclerosis was induced using an anti-podocyte antibody that causes abrupt podocyte depletion. Nanoparticles were modified with carboxymethyl-terminated poly(ethylene glycol) for stability and biocompatibility. After intravenous injection, fluorescence from nanoparticles of size 20 and 100 nm, but not 200 nm, was observed in kidney glomeruli and peritubular capillaries. During conditions of experimental focal segmental glomerulosclerosis, the number of fluorescent nanoparticle punctae in kidney glomeruli increased by 1.9-fold for 20 and 100 nm nanoparticles compared to normal conditions. These findings underscore the importance of understanding and leveraging kidney pathophysiology in engineering new, targeted drug carriers that accumulate more in diseased glomeruli to treat glomerular kidney disease.


Asunto(s)
Glomerulonefritis/metabolismo , Nanopartículas/metabolismo , Podocitos/metabolismo , Animales , Colorantes Fluorescentes/química , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Polietilenglicoles/química , Poliestirenos/química
19.
Sci Adv ; 6(22): eaba4542, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32518827

RESUMEN

Fluorescence microscopy is a workhorse tool in biomedical imaging but often poses substantial challenges to practitioners in achieving bright or uniform labeling. In addition, while antibodies are effective specific labels, their reproducibility is often inconsistent, and they are difficult to use when staining thick specimens. We report the use of conventional, commercially available fluorescent dyes for rapid and intense covalent labeling of proteins and carbohydrates in super-resolution (expansion) microscopy and cleared tissue microscopy. This approach, which we refer to as Fluorescent Labeling of Abundant Reactive Entities (FLARE), produces simple and robust stains that are modern equivalents of classic small-molecule histology stains. It efficiently reveals a wealth of key landmarks in cells and tissues under different fixation or sample processing conditions and is compatible with immunolabeling of proteins and in situ hybridization labeling of nucleic acids.

20.
Physiol Rep ; 8(12): e14487, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32597007

RESUMEN

CD44 contributes to the activation of glomerular parietal epithelial cells (PECs). Although CD44 expression is higher in PECs of healthy aged mice, the biological role of CD44 in PECs in this context remains unclear. Accordingly, young (4 months) and aged (24 months) CD44-/- mice were compared to age-matched CD44+/+ mice, both aged in a nonstressed environment. Parietal epithelial cell densities were similar in both young and aged CD44+/+ and CD44-/- mice. Phosphorylated ERK 1/2 (pERK) was higher in aged CD44+/+ mice. Vimentin and α-SMA, markers of changes to the epithelial cell phenotype, were present in PECs in aged CD44+/+ mice, but absent in aged CD44-/- mice in both outer cortical (OC) and juxtamedullary (JM) glomeruli. Because age-related glomerular hypertrophy was lower in CD44-/- mice, mTOR activation was assessed by phospho-S6 ribosomal protein (pS6RP) staining. Parietal epithelial cells and glomerular tuft staining for pS6RP was lower in aged CD44-/- mice compared to aged CD44+/+ mice. Podocyte density was higher in aged CD44-/- mice in both OC and JM glomeruli. These changes were accompanied by segmental and global glomerulosclerosis in aged CD44+/+ mice, but absent in aged CD44-/- mice. These results show that the increase in CD44 in PECs in aged kidneys contributes to several changes to the glomerulus during healthy aging in mice, and may involve ERK and mTOR activation.


Asunto(s)
Receptores de Hialuranos/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/metabolismo , Podocitos/patología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Receptores de Hialuranos/genética , Enfermedades Renales/genética , Glomérulos Renales/patología , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Podocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...