Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 13(1)2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-35052496

RESUMEN

Drought, ultraviolet-B (UV-B), and nitrogen stress are significant constraints for sweetpotato productivity. Their impact on plant growth and development can be acute, resulting in low productivity. Identifying phenotypes that govern stress tolerance in sweetpotatoes is highly desirable to develop elite cultivars with better yield. Ten sweetpotato cultivars were grown under nonstress (100% replacement of evapotranspiration (ET)), drought-stress (50% replacement of ET), UV-B (10 kJ), and low-nitrogen (20% LN) conditions. Various shoot and root morphological, physiological, and gas-exchange traits were measured at the early stage of the crop growth to assess its performance and association with the storage root number. All three stress factors caused significant changes in the physiological and root- and shoot-related traits. Drought stress reduced most shoot developmental traits (29%) to maintain root growth. UV-B stress increased the accumulation of plant pigments and decreased the photosynthetic rate. Low-nitrogen treatment decreased shoot growth (11%) and increased the root traits (18%). The highly stable and productive cultivars under all four treatments were identified using multitrait stability index analysis and weighted average of absolute scores (WAASB) analyses. Further, based on the total stress response indices, 'Evangeline', 'O'Henry', and 'Beauregard B-14' were identified as vigorous under drought; 'Evangeline', 'Orleans', and 'Covington' under UV-B; and 'Bonita', 'Orleans', and 'Beauregard B-14' cultivars showed greater tolerance to low nitrogen. The cultivars 'Vardaman' and 'NC05-198' recorded a low tolerance index across stress treatments. This information could help determine which plant phenotypes are desirable under stress treatment for better productivity. The cultivars identified as tolerant, sensitive, and well-adapted within and across stress treatments can be used as source materials for abiotic stress tolerance breeding programs.


Asunto(s)
Sequías , Ipomoea batatas/crecimiento & desarrollo , Nitrógeno/deficiencia , Hojas de la Planta/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Estrés Fisiológico , Rayos Ultravioleta/efectos adversos , Adaptación Fisiológica , Ipomoea batatas/metabolismo , Ipomoea batatas/efectos de la radiación , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación , Estaciones del Año
2.
J Environ Qual ; 47(3): 427-435, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864187

RESUMEN

Agronomic management is aimed at managing the crop environment to maximize crop yield, but soil biology is often ignored. This study aimed to compare the application of poultry litter via broadcast and subsurface banding versus standard inorganic fertilizer to cotton ( L.) and their effects on soil bacterial populations and fecal indicator bacteria. The study comprised a randomized complete block design, with fertilizer and time of application as treatment effects and cover crop as a main effect. Soil cores were collected and analyzed from 2008 to 2014. Fecal indicator bacteria were at detection limits for all treatments, where the integron 1 gene was significantly elevated in litter plots. There were few differences between litter application approaches, but both significantly increased key biogeochemical genes over control plots, whereas a cover crop only increased soil moisture and urease C. Data suggested a positive residual effect of litter application with 16S, phosphatase A, and urease C genes elevated over controls, but similar to standard fertilizer plots. High-throughput 16S ribosomal RNA analysis suggested increased diversity and enrichment indices in litter and standard fertilizer over untreated control plots. Litter and standard fertilizer effects persisted 4 and 2 yr after application, respectively, as evidenced by residual library community structures. This study demonstrated the positive effects of litter application on the soil bacterial community when compared with untreated control plots. Some differences between standard fertilization and litter practices were noted and suggest that there is a positive residual effect on soil microbial populations associated with both practices.


Asunto(s)
Fertilizantes , Estiércol , Microbiología del Suelo , Animales , Aves de Corral , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...