Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
EMBO J ; 41(15): e109566, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35762422

RESUMEN

CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Ubiquitina , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
EMBO Rep ; 22(8): e52071, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34288362

RESUMEN

Organismal functionality and reproduction depend on metabolic rewiring and balanced energy resources. However, the crosstalk between organismal homeostasis and fecundity and the associated paracrine signaling mechanisms are still poorly understood. Using Caenorhabditis elegans, we discovered that large extracellular vesicles (known as exophers) previously found to remove damaged subcellular elements in neurons and cardiomyocytes are released by body wall muscles (BWM) to support embryonic growth. Exopher formation (exopheresis) by BWM is sex-specific and a non-cell autonomous process regulated by developing embryos in the uterus. Embryo-derived factors induce the production of exophers that transport yolk proteins produced in the BWM and ultimately deliver them to newly formed oocytes. Consequently, offspring of mothers with a high number of muscle-derived exophers grew faster. We propose that the primary role of muscular exopheresis is to stimulate reproductive capacity, thereby influencing the adaptation of worm populations to the current environmental conditions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Aptitud Genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Femenino , Masculino , Músculos , Reproducción
4.
Bioessays ; 42(1): e1900171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31778250

RESUMEN

The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin-proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the UPS and different types of RNA are reviewed. This interplay mainly involves specific RNA-binding E3 ligases that link RNA-dependent processes with protein ubiquitylation. The emerging understanding of their modes of RNA binding, their RNA targets, and their molecular and cellular functions are primarily focused on. It is discussed how the UPS adapted to interact with different types of RNA and how RNA molecules influence the ubiquitin signaling components.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Ribosomas/metabolismo , Transducción de Señal , Ubiquitina/genética , Ubiquitinación
5.
J Gerontol A Biol Sci Med Sci ; 71(12): 1553-1559, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26865495

RESUMEN

In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidad/genética , Estabilidad Proteica , Aminoácidos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Glutatión/metabolismo , Mutación/genética , Fenotipo , Trehalosa/metabolismo
6.
Mol Cell Proteomics ; 12(12): 3624-39, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002365

RESUMEN

Reduced signaling through the C. elegans insulin/insulin-like growth factor-1-like tyrosine kinase receptor daf-2 and dietary restriction via bacterial dilution are two well-characterized lifespan-extending interventions that operate in parallel or through (partially) independent mechanisms. Using accurate mass and time tag LC-MS/MS quantitative proteomics, we detected that the abundance of a large number of ribosomal subunits is decreased in response to dietary restriction, as well as in the daf-2(e1370) insulin/insulin-like growth factor-1-receptor mutant. In addition, general protein synthesis levels in these long-lived worms are repressed. Surprisingly, ribosomal transcript levels were not correlated to actual protein abundance, suggesting that post-transcriptional regulation determines ribosome content. Proteomics also revealed the increased presence of many structural muscle cell components in long-lived worms, which appeared to result from the prioritized preservation of muscle cell volume in nutrient-poor conditions or low insulin-like signaling. Activation of DAF-16, but not diet restriction, stimulates mRNA expression of muscle-related genes to prevent muscle atrophy. Important daf-2-specific proteome changes include overexpression of aerobic metabolism enzymes and general activation of stress-responsive and immune defense systems, whereas the increased abundance of many protein subunits of the proteasome core complex is a dietary-restriction-specific characteristic.


Asunto(s)
Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Restricción Calórica , Cromatografía Liquida , Metabolismo Energético/genética , Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Longevidad/genética , Proteínas Musculares/genética , Mutación , Biosíntesis de Proteínas , Proteómica/métodos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Mol Cell Endocrinol ; 361(1-2): 232-40, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22579613

RESUMEN

In Caenorhabditis elegans, pdfr-1 encodes three receptors of the secretin receptor family. These G protein-coupled receptors are activated by three neuropeptides, pigment dispersing factors 1a, 1b and 2, which are encoded by pdf-1 and pdf-2. We isolated a PDF receptor loss-of-function allele (lst34) by means of a mutagenesis screen and show that the PDF signaling system is involved in locomotion and egg-laying. We demonstrate that the pdfr-1 mutant phenocopies the defective locomotor behavior of the pdf-1 mutant and that pdf-1 and pdf-2 behave antagonistically. All three PDF receptor splice variants are involved in the regulation of locomotor behavior. Cell specific rescue experiments show that this pdf mediated behavior is regulated by neurons rather than body wall muscles. We also show that egg-laying patterns of pdf-1 and pdf-2 mutants are affected, but not those of pdfr-1 mutants, pointing to a novel role for the PDF-system in the regulation of egg-laying.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Locomoción/fisiología , Oviposición/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Conducta Animal/fisiología , Técnicas de Inactivación de Genes , Mutación/genética , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA