Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 17(847): eadn8936, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078919

RESUMEN

Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with increased incidence of chronic musculoskeletal pain. We investigated the mechanism of this association in a mouse model of chronic intermittent hypoxia (CIH) that mimics the repetitive hypoxemias of OSA. After 14 days of CIH, both male and female mice exhibited behaviors indicative of persistent pain, with biochemical markers in the spinal cord dorsal horn and sensory neurons of the dorsal root ganglia consistent with hyperalgesic priming. CIH, but not sleep fragmentation alone, induced an increase in macrophage recruitment to peripheral sensory tissues (sciatic nerve and dorsal root ganglia), an increase in inflammatory cytokines in the circulation, and nociceptor sensitization. Peripheral macrophage ablation blocked CIH-induced hyperalgesic priming. The findings suggest that correcting the hypoxia or targeting macrophage signaling might suppress persistent pain in patients with OSA.


Asunto(s)
Hipoxia , Macrófagos , Nociceptores , Animales , Hipoxia/metabolismo , Macrófagos/metabolismo , Masculino , Femenino , Ratones , Nociceptores/metabolismo , Ganglios Espinales/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Citocinas/metabolismo , Dolor Crónico/metabolismo , Dolor Crónico/inmunología
2.
J Headache Pain ; 25(1): 87, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802819

RESUMEN

BACKGROUND: Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS: The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS: Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS: Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.


Asunto(s)
Mastocitos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Estrés Psicológico , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Mastocitos/metabolismo , Masculino , Ratones , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ganglio del Trigémino/metabolismo , Cefalea/etiología , Cefalea/metabolismo , Cefalea/fisiopatología , Ratones Noqueados , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293055

RESUMEN

Patients with temporomandibular disorders (TMD) typically experience facial pain and discomfort or tenderness in the temporomandibular joint (TMJ), causing disability in daily life. Unfortunately, existing treatments for TMD are not always effective, creating a need for more advanced, mechanism-based therapies. In this study, we used in vivo GCaMP3 Ca 2+ imaging of intact trigeminal ganglia (TG) to characterize functional activity of the TG neurons in vivo , specifically in TMJ animal models. This system allows us to observe neuronal activity in intact anatomical, physiological, and clinical conditions and to assess neuronal function and response to various stimuli. We observed a significant increase in spontaneously and transiently activated neurons responding to mechanical, thermal, and chemical stimuli in the TG of forced mouth open (FMO) mice. An inhibitor of the CGRP receptor significantly attenuated FMO-induced facial hypersensitivity. In addition, we confirmed the attenuating effect of CGRP antagonist on FMO-induced sensitization by in vivo GCaMP3 Ca 2+ imaging of intact TG. Our results contribute to unraveling the role and activity of TG neurons in the TMJ pain animal models of TMD, bringing us closer understanding the pathophysiological processes underlying TMD. Our study also illustrates the utility of in vivo GCaMP3 Ca 2+ imaging of intact TG for studies aimed at developing more targeted and effective treatments for TMD.

4.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293066

RESUMEN

Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. The pathophysiology of TMD is not fully understood, and it is necessary to understand pathophysiology underlying painful TMD conditions to develop more effective treatment methods. Recent studies suggested that external or intrinsic trauma to TMJ is associated with chronic TMD in patients. Here, we investigated the effects of the TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors. FMO increased mechanical hyperalgesia assessed by von Frey test, spontaneous pain-like behaviors assessed by mouse grimace scale, and anxiety-like behaviors assessed by open-field test. In vivo GCaMP Ca 2+ imaging of intact trigeminal ganglia (TG) showed increased spontaneous Ca 2+ activity and mechanical hypersensitivity of TG neurons in the FMO compared to the sham group. Ca 2+ responses evoked by cold, heat, and capsaicin stimuli were also increased. FMO-induced hyperalgesia and neuronal hyperactivities were not sex dependent. TG neurons sensitized following FMO were primarily small to medium-sized nociceptive afferents. Consistently, most TMJ afferents in the TG were small-sized peptidergic neurons expressing calcitonin gene-related peptides, whereas nonpeptidergic TMJ afferents were relatively low. FMO-induced intraneural inflammation in the surrounding tissues of the TMJ indicates potentially novel mechanisms of peripheral sensitization following TMJ injury. These results suggest that the TMJ injury leads to persistent post-traumatic hyperalgesia associated with peripheral sensitization of trigeminal nociceptors.

5.
Neuron ; 112(1): 113-123.e4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37909038

RESUMEN

Rehabilitation from alcohol addiction or abuse is hampered by withdrawal symptoms including severe headaches, which often lead to rehabilitation failure. There is no appropriate therapeutic option available for alcohol-withdrawal-induced headaches. Here, we show the role of the mast-cell-specific receptor MrgprB2 in the development of alcohol-withdrawal-induced headache. Withdrawing alcohol from alcohol-acclimated mice induces headache behaviors, including facial allodynia, facial pain expressions, and reduced movement, which are symptoms often observed in humans. Those behaviors were absent in MrgprB2-deficient mice during alcohol withdrawal. We observed in vivo spontaneous activation and hypersensitization of trigeminal ganglia (TG) neurons in alcohol-withdrawal WT mice, but not in alcohol-withdrawal MrgprB2-deficient mice. Increased mast cell degranulation by alcohol withdrawal in dura mater was dependent on the presence of MrgprB2. The results indicate that alcohol withdrawal causes headache via MrgprB2 of mast cells in dura mater, suggesting that MrgprB2 is a potential target for treating alcohol-withdrawal-related headaches.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Humanos , Ratones , Masculino , Animales , Mastocitos/metabolismo , Síndrome de Abstinencia a Sustancias/complicaciones , Síndrome de Abstinencia a Sustancias/metabolismo , Ganglio del Trigémino/fisiología , Cefalea/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847407

RESUMEN

Ca2+ imaging can be used as a proxy for cellular activity, including action potentials and various signaling mechanisms involving Ca2+ entry into the cytoplasm or the release of intracellular Ca2+ stores. Pirt-GCaMP3-based Ca2+ imaging of primary sensory neurons of the dorsal root ganglion (DRG) in mice offers the advantage of simultaneous measurement of a large number of cells. Up to 1,800 neurons can be monitored, allowing neuronal networks and somatosensory processes to be studied as an ensemble in their normal physiological context at a populational level in vivo. The large number of neurons monitored allows the detection of activity patterns that would be challenging to detect using other methods. Stimuli can be applied to the mouse hindpaw, allowing the direct effects of stimuli on the DRG neuron ensemble to be studied. The number of neurons producing Ca2+ transients as well as the amplitude of Ca2+ transients indicates sensitivity to specific sensory modalities. The diameter of neurons provides evidence of activated fiber types (non-noxious mechano vs. noxious pain fibers, Aß, Aδ, and C fibers). Neurons expressing specific receptors can be genetically labeled with td-Tomato and specific Cre recombinases together with Pirt-GCaMP. Therefore, Pirt-GCaMP3 Ca2+ imaging of DRG provides a powerful tool and model for the analysis of specific sensory modalities and neuron subtypes acting as an ensemble at the populational level to study pain, itch, touch, and other somatosensory signals.


Asunto(s)
Calcio , Ganglios Espinales , Ratones , Animales , Calcio/farmacología , Potenciales de Acción , Células Receptoras Sensoriales , Dolor
7.
PLoS Comput Biol ; 18(6): e1009846, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696439

RESUMEN

We introduce cytoNet, a cloud-based tool to characterize cell populations from microscopy images. cytoNet quantifies spatial topology and functional relationships in cell communities using principles of network science. Capturing multicellular dynamics through graph features, cytoNet also evaluates the effect of cell-cell interactions on individual cell phenotypes. We demonstrate cytoNet's capabilities in four case studies: 1) characterizing the temporal dynamics of neural progenitor cell communities during neural differentiation, 2) identifying communities of pain-sensing neurons in vivo, 3) capturing the effect of cell community on endothelial cell morphology, and 4) investigating the effect of laminin α4 on perivascular niches in adipose tissue. The analytical framework introduced here can be used to study the dynamics of complex cell communities in a quantitative manner, leading to a deeper understanding of environmental effects on cellular behavior. The versatile, cloud-based format of cytoNet makes the image analysis framework accessible to researchers across domains.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Células-Madre Neurales , Procesamiento de Imagen Asistido por Computador/métodos , Neuronas , Análisis Espacio-Temporal
8.
J Neurosci ; 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35772967

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) affects about 68% of patients undergoing chemotherapy, causing debilitating neuropathic pain and reducing quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing and pain mitigation. Meclizine is an H1 histamine receptor antagonist known to have neuroprotective effects, including an anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN using male and female mice to test agonists of mGluR8 and group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests, and we imaged Ca2+ activity of the large population of DRG neurons in vivo For the latter, we used a genetically-encoded Ca2+ indicator, Pirt-GCaMP3, which enabled us to monitor different drug interventions at the level of the intact DRG neuronal ensemble. We found that CIPN increased spontaneous Ca2+ activity in DRG neurons, increased number of Ca2+ transients, and increased hyper-responses to mechanical, thermal, and chemical stimuli. We found that mechanical and thermal pain caused by CIPN was significantly attenuated by the mGluR8 agonist, (S)-3,4-DCPG, the group II mGluR agonist, LY379268, and the H1 histamine receptor antagonist, meclizine. DRG neuronal Ca2+ activity elevated by CIPN was attenuated by LY379268 and meclizine, but not by (S)-3,4-DCPG. Furthermore, meclizine and LY379268 attenuated cisplatin-induced weight loss. These results suggest that group II mGluR agonist, mGluR8 agonist, and meclizine are promising candidates as new treatment options for CIPN, and studies of their mechanisms are warranted.SIGNIFICANCE STATEMENTChemotherapy-induced peripheral neuropathy (CIPN) is a painful condition that affects most chemotherapy patients and persist several months or longer after treatment ends. Research on CIPN mechanism is extensive but has produced only few clinically useful treatments. Utilizing in vivo GCaMP Ca2+ imaging in live animals over 1800 neurons/DRG at once, we have characterized the effects of the chemotherapeutic drug, cisplatin and three treatments that decrease CIPN pain. Cisplatin increases sensory neuronal Ca2+ activity and develops various sensitization. Metabotropic glutamate receptor agonist, LY379268 or the H1 histamine receptor antagonist, meclizine decreases cisplatin's effects on neuronal Ca2+ activity and reduces pain hypersensitivity. Our results and experiments provide insights into cellular effects of cisplatin and drugs preventing CIPN pain.

9.
Sci Rep ; 11(1): 17813, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497285

RESUMEN

Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.


Asunto(s)
Hormona del Crecimiento/metabolismo , Dolor/metabolismo , Proopiomelanocortina/metabolismo , Prolactina/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ratones , Ratones Transgénicos , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio del Trigémino/citología
10.
Eur J Pharmacol ; 910: 174448, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34454926

RESUMEN

Reduced skin blood flow has been reported in neuropathic pain patients as well as various peripheral neuropathic pain model animals. We have previously shown that vasodilators, which improves reduced skin blood flow, correlatively alleviate neuropathic pain in chronic constriction injury (CCI) mice, a model of neuropathic pain from peripheral nerve injury. Here, we sought to elucidate the mechanism underlying the reduced skin blood flow in CCI rats. The skin blood flow of the ipsilateral plantar arteries was significantly reduced compared to that of the contralateral ones 4 weeks after loose ligation of the sciatic nerve. The contraction induced by noradrenaline, serotonin, and U46619, a thromboxane receptor agonist, in the isolated ipsilateral plantar arteries was significantly enhanced compared to that in the contralateral ones. KB-R7943, a Na+/Ca2+ exchanger (NCX) inhibitor, shifted the concentration-response curves of noradrenaline to the left in the contralateral arteries but had no effect on the ipsilateral side. There was no significant difference in concentration-response curves of noradrenaline between the ipsilateral and contralateral arteries in the presence of KB-R7943. Amiloride, a non-specific inhibitor of Na+ channels and transporters, comparably shifted concentration-response curves of noradrenaline to the left in both the contralateral and ipsilateral arteries. One hundred nM of noradrenaline induced intracellular Ca2+ elevation in the ipsilateral arteries, which was significantly larger than that induced by 300-nM noradrenaline in the contralateral arteries. These results suggest that reduced peripheral blood flow after nerve injury is due to Na+-dependent inactivation of NCX in the ipsilateral plantar arteries.


Asunto(s)
Circulación Sanguínea/efectos de los fármacos , Neuralgia/metabolismo , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo , Sodio/metabolismo , Vasodilatadores/farmacología , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Amilorida/farmacología , Animales , Arterias/efectos de los fármacos , Compuestos de Boro/farmacología , Calcimicina/farmacología , Calcio/metabolismo , Ionóforos de Calcio/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Contracción Muscular/efectos de los fármacos , Nifedipino/farmacología , Norepinefrina/farmacología , Ouabaína/farmacología , Ratas Wistar , Serotonina/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Vasoconstrictores/farmacología
11.
J Neurosci ; 41(41): 8494-8507, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34452938

RESUMEN

Previous studies have shown that infiltration of capsaicin into the surgical site can prevent incision-induced spontaneous pain like behaviors and heat hyperalgesia. In the present study, we aimed to monitor primary sensory neuron Ca2+ activity in the intact dorsal root ganglia (DRG) using Pirt-GCaMP3 male and female mice pretreated with capsaicin or vehicle before the plantar incision. Intraplantar injection of capsaicin (0.05%) significantly attenuated spontaneous pain, mechanical, and heat hypersensitivity after plantar incision. The Ca2+ response in in vivo DRG and in in situ spinal cord was significantly enhanced in the ipsilateral side compared with contralateral side or naive control. Primary sensory nerve fiber length was significantly decreased in the incision skin area in capsaicin-pretreated animals detected by immunohistochemistry and placental alkaline phosphatase (PLAP) staining. Thus, capsaicin pretreatment attenuates incisional pain by suppressing Ca2+ response because of degeneration of primary sensory nerve fibers in the skin.SIGNIFICANCE STATEMENT Postoperative surgery pain is a major health and economic problem worldwide with ∼235 million major surgical procedures annually. Approximately 50% of these patients report uncontrolled or poorly controlled postoperative pain. However, mechanistic studies of postoperative surgery pain in primary sensory neurons have been limited to in vitro models or small numbers of neurons. Using an innovative, distinctive, and interdisciplinary in vivo populational dorsal root ganglia (DRG) imaging (>1800 neurons/DRG) approach, we revealed increased DRG neuronal Ca2+ activity from postoperative pain mouse model. This indicates widespread DRG primary sensory neuron plasticity. Increased neuronal Ca2+ activity occurs among various sizes of neurons but mostly in small-diameter and medium-diameter nociceptors. Capsaicin pretreatment as a therapeutic option significantly attenuates Ca2+ activity and postoperative pain.


Asunto(s)
Calcio/metabolismo , Capsaicina/administración & dosificación , Ganglios Espinales/metabolismo , Dolor Postoperatorio/metabolismo , Dolor Postoperatorio/prevención & control , Herida Quirúrgica/metabolismo , Vías Aferentes/química , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Animales , Femenino , Ganglios Espinales/química , Miembro Posterior/inervación , Miembro Posterior/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Plantar/química , Placa Plantar/inervación , Placa Plantar/metabolismo , Fármacos del Sistema Sensorial/administración & dosificación
12.
Artículo en Inglés | MEDLINE | ID: mdl-27068049

RESUMEN

Initial antidepressant treatment can paradoxically worsen symptoms in depressed adolescents by undetermined mechanisms. Interestingly, antidepressants modulate GABAA receptors, which mediate paradoxical effects of other therapeutic drugs, particularly in females. Although the neuroanatomic site of action for this paradox is unknown, elevated GABAA receptor signaling in the nucleus accumbens can disrupt motivation. We assessed fluoxetine's effects on motivated behaviors in pubescent female hamsters - anhedonia in the reward investigational preference (RIP) test as well as anxiety in the anxiety-related feeding/exploration conflict (AFEC) test. We also assessed accumbal signaling by RT-PCR and electrophysiology. Fluoxetine initially worsened motivated behaviors at puberty, relative to adulthood. It also failed to improve these behaviors as pubescent hamsters transitioned into adulthood. Low accumbal mRNA levels of multiple GABAA receptor subunits and GABA-synthesizing enzyme, GAD67, assessed by RT-PCR, suggested low GABAergic tone at puberty. Nonetheless, rapid fluoxetine-induced reductions of α5GABAA receptor and BDNF mRNA levels at puberty were consistent with age-related differences in GABAergic responses to fluoxetine and disruption of the motivational state. Whole-cell patch clamping of accumbal slices also suggested low GABAergic tone by the low amplitude of miniature inhibitory postsynaptic currents (mIPSCs) at puberty. It also confirmed age-related differences in GABAergic responses to fluoxetine. Specifically, fluoxetine potentiated mIPSC amplitude and frequency at puberty, but attenuated the amplitude during adulthood. These results implicate GABAergic tone and GABAA receptor plasticity in adverse motivational responses and resistance to fluoxetine during adolescence.


Asunto(s)
Fluoxetina/farmacología , Motivación/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/crecimiento & desarrollo , Ácido gamma-Aminobutírico/metabolismo , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Conflicto Psicológico , Cricetinae , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Motivación/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Núcleo Accumbens/metabolismo , ARN Mensajero/metabolismo , Receptores de GABA-A/metabolismo , Recompensa , Maduración Sexual/efectos de los fármacos , Maduración Sexual/fisiología , Técnicas de Cultivo de Tejidos
13.
Physiol Behav ; 147: 102-16, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25896879

RESUMEN

Women are more likely than men to exhibit motivational disorders (e.g., anhedonia and anxiety) with limited treatment options, and to overconsume high-fat "comfort foods" to improve motivational disruptions. Unfortunately, neurobiological underpinnings for sex differences in motivational disruptions and their responses to dietary fat are poorly understood. To help bridge these fundamental knowledge gaps, we assessed behavioral and neurobiological responses to dietary fat in a hamster model of female-biased motivational lability. Relative to social housing, social separation reduced hedonic drive in a new behavioral assay, the reward investigational preference (RIP) test. Fluoxetine or desipramine treatment for 21, but not 7, days improved RIP test performance. Pharmacologic specificity in this test was shown by non-responsiveness to diazepam, tracazolate, propranolol, or naltrexone. In the anxiety-related feeding/exploration conflict (AFEC) test, social separation worsened latency to eat highly palatable food under anxiogenic conditions, but not in home cages. Social separation also reduced weight gain, food intake, and adiposity while elevating energy expenditure, assessed by caloric efficiency and indirect calorimetry. Furthermore, chronic high-fat feeding improved anhedonic and anxious responses to separation, particularly in females. In the motivation-influencing nucleus accumbens, females, but not males, exhibited a separation-induced anxiety-related decrease in Creb1 mRNA levels and an anhedonia-related decrease in ΔFosb mRNA levels. Consistent with its antidepressant- and anxiolytic-like effects on behavior, high-fat feeding elevated accumbal Creb1 and ΔFosb mRNA levels in females only. Another accumbal reward marker, Tlr4 mRNA, was elevated in females by high-fat feeding. These results show that social separation of hamsters provides a novel model of sex-dependent comorbid anhedonia, anxiety, and anorexia, and implicate accumbal CREB, ΔFosB, and TLR4. Moreover, the results validate a new assay for chronic antidepressant efficacy.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Motivación/fisiología , Caracteres Sexuales , Análisis de Varianza , Animales , Antidepresivos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Calorimetría , Estudios de Cohortes , Cricetinae , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Desipramina , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Femenino , Fluoxetina , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Mesocricetus , Motivación/efectos de los fármacos , ARN Mensajero/metabolismo , Recompensa , Conducta Social , Aislamiento Social/psicología
14.
Physiol Behav ; 133: 141-51, 2014 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-24866911

RESUMEN

Anorexia and anxiety cause significant mortality and disability with female biases and frequent comorbidity after puberty, but the scarcity of suitable animal models impedes understanding of their biological underpinnings. It is reported here that in adult or weanling Syrian hamsters, relative to social housing (SH), social separation (SS) induced anorexia characterized as hypophagia, weight loss, reduced adiposity, and hypermetabolism. Following anorexia, SS increased reluctance to feed, and thigmotaxis, in anxiogenic environments. Importantly, anorexia and anxiety were induced post-puberty with female biases. SS also reduced hypothalamic corticotrophin-releasing factor mRNA and serum corticosteroid levels assessed by RT-PCR and RIA, respectively. Consistent with the view that sex differences in adrenal suppression contributed to female biases in anorexia and anxiety by disinhibiting neuroimmune activity, SS elevated hypothalamic interleukin-6 and toll-like receptor 4 mRNA levels. Although corticosteroids were highest during SH, they were within the physiological range and associated with juvenile-like growth of white adipose, bone, and skeletal muscle. These results suggest that hamsters exhibit plasticity in bioenergetic and emotional phenotypes across puberty without an increase in stress responsiveness. Thus, social separation of hamsters provides a model of sex differences in anorexia and anxiety during adulthood and their pathogeneses during adolescence.


Asunto(s)
Anorexia/etiología , Ansiedad/etiología , Sesgo , Corticoesteroides/sangre , Animales , Peso Corporal/fisiología , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Cricetinae , Modelos Animales de Enfermedad , Ingestión de Alimentos , Metabolismo Energético , Conducta Exploratoria , Femenino , Hipotálamo/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Mesocricetus , Factores Sexuales , Aislamiento Social/psicología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
15.
Mol Cell Endocrinol ; 391(1-2): 1-9, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24791736

RESUMEN

The present study sought novel changes to the hamster testicular transcriptome during modulation of fertility by well-characterized photoperiodic stimuli. Transition from long days (LD, 14 h light/day) to short days (SD, 10h light/day) triggered testicular regression (61% reduction of testis weight, relative to LD) in SD-sensitive (SD-S) hamsters within 16 weeks. After 22 weeks of SD exposure, a third cohort of hamsters became SD-refractory (SD-R), and exhibited testicular recrudescence (137% testis weight gain, relative to SD-S). Partial interrogation of the testicular transcriptome by annealing-control-primer-modified differential display PCR provided several candidates for regulation of testicular functions. Multiple linear regression modeling indicated the best correlation for aquaporin 11 (Aqp11) with changes in testis weight. Correlations were also strongest for Aqp11 with expression levels of reference cDNAs that control spermatogenesis (Hspa2 and Tnp2), steroidogenesis (Cox2, 3ßHsd, and Srebp2), sperm motility (Catsper1, Pgk2, and Tnp2), inflammation (Cox2), and apoptosis (Bax and Bcl2). Moreover, siRNA-mediated knockdown of testicular Aqp11 mRNA and protein reduced Hspa2 and Tnp2 mRNA levels, and it increased 3ßHsd mRNA levels. It also reduced mRNA levels for Sept12, which is a testis-specific inducer of spermatogenesis. These results suggest a central role for testicular Aqp11 signaling in the coordinate regulation of crucial components of fertility.


Asunto(s)
Acuaporinas/genética , Fertilidad/genética , Mesocricetus/genética , Espermatogénesis/genética , Testículo/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Acuaporinas/antagonistas & inhibidores , Acuaporinas/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Lineales , Masculino , Mesocricetus/crecimiento & desarrollo , Mesocricetus/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tamaño de los Órganos , Fosfoglicerato Quinasa/genética , Fosfoglicerato Quinasa/metabolismo , Fotoperiodo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Septinas/genética , Septinas/metabolismo , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Testículo/crecimiento & desarrollo
16.
J Neurosci Methods ; 221: 62-9, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24091137

RESUMEN

BACKGROUND: Latency to feed in a novel environment assesses anxious behavior in rodents, but it is unclear whether it distinguishes anxiety from consumption or appetite. NEW METHOD: The anxiety-related feeding/exploration conflict (AFEC) test was used here to assess anxious behavior in Syrian hamsters for which increased cheek-pouching of food, but not overconsumption of it, reflects appetitive drive, and orexigenic stimuli do not increase consumption. The setup of the test prevented cheek-pouching. COMPARISON WITH EXISTING METHODS: Latency to approach test food provided an additional control for non-emotional effects of treatments. Feed and approach latencies in the test cage were normalized to those in the home cage to factor out non-emotional effects. RESULTS: Feed latency and the feed latency ratio (test cage/home cage) were reduced by acute treatment with benzodiazepine, diazepam, or beta-adrenergic receptor antagonist, propranolol, or chronic treatment with norepinephrine reuptake inhibitor, desipramine. Reductions of feed latency and the feed latency ratio were not associated with hyperphagia, and these behaviors were unaltered by acute treatment with opioid receptor antagonist, naltrexone. Latency to approach food in the test cage, with and without normalization, was unaltered by these treatments. Finally, overnight fasting elevated feed latency without hyperphagia, and this effect was attenuated by chronic desipramine treatment. CONCLUSIONS: These results suggest that the AFEC test assesses anxious, but not appetitive or consummatory, behavior, and that its sensitivity increases with food deprivation of hamsters.


Asunto(s)
Ansiedad , Apetito , Conducta Animal/fisiología , Conducta Exploratoria , Mesocricetus/psicología , Animales , Ansiolíticos/farmacología , Conducta Animal/efectos de los fármacos , Cricetinae , Diazepam/farmacología , Conducta Exploratoria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...