RESUMEN
Using synthetic microbial communities to promote host growth is an effective approach. However, the construction of such communities lacks theoretical guidance. Kin discrimination is an effective means by which strains can recognize themselves from non-self, and construct competitive microbial communities to produce more secondary metabolites. However, the construction of cooperative communities benefits from the widespread use of beneficial microorganisms. We used kin discrimination to construct synthetic communities (SCs) comprising 13 Bacillus subtilis strains from the surface and gut of black soldier fly (BSF) larvae. We assessed larval growth promotion in a pigeon manure system and found that the synthetic community comprising 4 strains (SC 4) had the most profound effect. Genomic analyses of these 4 strains revealed that their complementary functional genes underpinned the robust functionality of the cooperative synthetic community, highlighting the importance of strain diversity. After analyzing the bacterial composition of BSF larvae and the pigeon manure substrate, we observed that SC 4 altered the bacterial abundance in both the larval gut and pigeon manure. This also influenced microbial metabolic functions and co-occurrence network complexity. Kin discrimination facilitates the rapid construction of synthetic communities. The positive effects of SC 4 on larval weight gain resulted from the functional redundancy and complementarity among the strains. Furthermore, SC 4 may enhance larval growth by inducing shifts in the bacterial composition of the larval gut and pigeon manure. This elucidated how the SC promoted larval growth by regulating bacterial composition and provided theoretical guidance for the construction of SCs.
RESUMEN
OBJECTIVES: Elevated thioredoxin-interacting protein (TXNIP)-induced pyroptosis contributes to the pathology of diabetic kidney disease (DKD). However, the molecular mechanisms in dysregulated TXNIP in DKD remain largely unclear. MATERIALS AND METHODS: Transcriptomic analysis identified a novel long noncoding RNA-Prader Willi/Angelman region RNA, SNRPN neighbour (PWARSN)-which was highly expressed in a proximal tubular epithelial cell (PTEC) under high glucose conditions. We focused on revealing the functions of PWARSN in regulating TXNIP-mediated pyroptosis in PTECs by targeting PWARSN expression via lentivirus-mediated overexpression and CRISPR-Cas9-based knockout in vitro and overexpressing PWARSN in the renal cortex by AAV-9 targeted injection in vivo. A number of molecular techniques disclosed the mechanisms of PWARSN in regulating TXNIP induced-pyroptosis in DKD. RESULTS: TXNIP-NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and PTEC pyroptosis were activated in the renal tubules of patients with DKD and in diabetic mice. Then we explored that PWARSN enhanced TXNIP-driven PTECs pyroptosis in vitro and in vivo. Mechanistically, cytoplasmic PWARSN sponged miR-372-3p to promote TXNIP expression. Moreover, nuclear PWARSN interacted and facilitated RNA binding motif protein X-linked (RBMX) degradation through ubiquitination, resulting in the initiation of TXNIP transcription by reducing H3K9me3-enrichment at the TXNIP promoter. Further analysis indicated that PWARSN might be a potential biomarker for DKD. CONCLUSIONS: These findings illustrate distinct dual molecular mechanisms for PWARSN-modulated TXNIP and PTECs pyroptosis in DKD, presenting PWARSN as a promising therapeutic target for DKD.
Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , MicroARNs , ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Proteínas Nucleares snRNP , Piroptosis/genética , Diabetes Mellitus Experimental/genética , MicroARNs/genética , Células Epiteliales/metabolismo , Proteínas Portadoras/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismoRESUMEN
The bioeconomy drives the development of life science and biotechnology as a blueprint for the future development of human society, and offers a cross-cutting perspective on the societal transformation towards long-term sustainability and the transition away from the non-renewable economy. Moreover, the sustainable bioeconomy strategies are consistent with the United Nation's (UN) Sustainable Development Goals (SDG) and are becoming the centre of the achievement for SDG. The Chinese '14th Five-Year Plan for Bioeconomy Development' (2021-2025), including the development goals of China's bioeconomy containing biomedicine, agriculture, bio-manufacturing and bio-security as a strategic priority, is discussed. The plan offers three pathways to improve bioeconomy, including technological innovation, industrialisation and policy supports. Finally, it concludes China's first bioeconomy development plan as a success, suggesting the key role of industrial biotechnology in bioeconomy.
RESUMEN
Leydig cells (LCs) apoptosis is responsible for the deficiency of serum testosterone in Late-onset hypogonadism (LOH), while its specific mechanism is still unknown. This study focuses on the role of long noncoding RNA (lncRNA) MIR22HG in LC apoptosis and aims to elaborate its regulatory mechanism. MIR22HG was up-regulated in the testicular tissues of mice with LOH and H2O2-treated TM3 cells (mouse Leydig cell line). Interference of MIR22HG ameliorated cell apoptosis and upregulated miR-125a-5p expression in H2O2-treated TM3 cells. Then, the interaction between MIR22HG and miR-125a-5p was confirmed with RIP and RNA pull-down assay. Further study showed that miR-125a-5p downregulated N-Myc downstream-regulated gene 2 (NDRG2) expression by targeting its 3'-UTR of mRNA. What's more, MIR22HG overexpression aggravated cell apoptosis and reduced testosterone production in TM3 cells via miR-125a-5p/NDRG2 pathway. MIR22HG knockdown elevated testosterone levels in LOH mice. In conclusion, MIR22HG up-regulated NDRG2 expression through targeting miR-125a-5p, thus promoting LC apoptosis in LOH.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hipogonadismo/etiología , Células Intersticiales del Testículo/fisiología , MicroARNs/metabolismo , MicroARNs/fisiología , Animales , Apoptosis , Línea Celular , Masculino , Ratones , Testosterona/metabolismoRESUMEN
Insufficient insulin produced by pancreatic ß-cells in the control of blood sugar is a central feature of the etiology of diabetes. Reports have shown that endoplasmic reticulum (ER) stress is fundamentally involved in ß-cell dysfunction. In this study, we hypothesized that NAD-dependent deacetylase sirtuin-3 (SIRT3), an important regulator of cell metabolism, protects pancreatic ß-cells from ER stress-mediated apoptosis. To validate our hypothesis, a rat diabetic model was established by a high-fat diet (HFD). We found that SIRT3 expression was markedly decreased in NIT1 and INS1 cells incubated with palmitate. Palmitate treatment significantly decreased ß-cell viability and insulin secretion, and promoted malondialdehyde (MDA) formation. However, SIRT3 overexpression in NIT1 and INS1 cells reversed these effects, resulting in higher insulin secretion, decreased ß-cell apoptosis, and downregulation of the expression of ER stress-associated genes. Moreover, SIRT3 overexpression also inhibited calcium influx and the hyperacetylation of glucose-regulated protein of 78 kDa (GRP78). SIRT3 knockdown effectively enhanced the upregulation of phospho-extracellular regulated protein kinases (pERK), inositol-requiring enzyme-1 (IRE1), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) induced by palmitate, and promoted palmitate-induced ß-cell apoptosis and dysfunction. Taken together, our results suggest that SIRT3 is an integral regulator of ER function and that its depletion might result in the hyperacetylation of critical ER proteins that protect against islet lipotoxicity under conditions of nutrient excess.
Asunto(s)
Apoptosis , Señalización del Calcio , Estrés del Retículo Endoplásmico , Regulación Enzimológica de la Expresión Génica , Células Secretoras de Insulina/enzimología , Sirtuinas/biosíntesis , Animales , Células Secretoras de Insulina/patología , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.
Asunto(s)
Hongos/aislamiento & purificación , Hongos/fisiología , Odonata/microbiología , Animales , Antibiosis , Biodiversidad , China , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Hongos/genética , Microbioma Gastrointestinal/genética , Larva/microbiología , Filogenia , SimbiosisRESUMEN
Insulin resistance is often characterized as the most critical factor contributing to the development of type 2 diabetes mellitus (T2DM). Sustained high glucose is an important extracellular environment that induces insulin resistance. Acquired insulin resistance is associated with reduced insulin-stimulated mitochondrial activity as a result of increased mitochondrial dysfunction. Silent information regulator 1 (SIRT1) is one member of the SIRT2 (Sir2)-like family of proteins involved in glucose homeostasis and insulin secretion in mammals. Although SIRT1 has a therapeutic effect on metabolic deterioration in insulin resistance, it is still not clear how SIRT1 is involved in the development of insulin resistance. Here, we demonstrate that pcDNA3.1 vector-mediated overexpression of SIRT1 attenuates insulin resistance in the high glucose-induced insulin-resistant skeleton muscle cells. These beneficial effects were associated with ameliorated mitochondrial dysfunction. Further studies have demonstrated that SIRT1 restores mitochondrial complex I activity leading to decreased oxidative stress and mitochondrial dysfunction. Furthermore, SIRT1 significantly elevated the level of another SIRT which is named SIRT3, and SIRT3 siRNA-suppressed SIRT1-induced mitochondria complex activity increments. Taken together, these results showed that SIRT1 improves insulin sensitivity via the amelioration of mitochondrial dysfunction, and this is achieved through the SIRT1-SIRT3-mitochondrial complex I pathway.
Asunto(s)
Glucosa/administración & dosificación , Resistencia a la Insulina , Mitocondrias Musculares/fisiología , Músculo Esquelético/fisiopatología , Sirtuina 1/fisiología , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Ratones , Músculo Esquelético/citología , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
In the proceeding of screening new bioactive natural products, the ethyl acetate extract of the fermentation broth of Fusarium proliferatum ZS07, a fungus residing in the gut of long-horned grasshoppers (Tettigonia chinensis), was found possessing selective phytotoxic activity against the radicle growth of Amaranthus retroflexus L. Bioactivity-guided fractionation lead to the isolation of six fungal metabolites 1-6, including a new polyketide derivate O-methylated SMA93 (2) and five known compounds SMA93 (1), rhodolamprometrin (3), radicinin (4), dehydroallogibberic acid (5), and 3-methyl-6,8-dihydroxyisocoumarin (6). Their structures were identified on the basis of spectroscopic analysis and by comparison of the corresponding data to those reported in the literature previously. Phytotoxic effects of the four isolated compounds 1-4 on the radicle growth of A. retroflexus L. seeds were investigated under laboratory conditions, and compounds 2 and 4 showed good phytotoxic activity in the concentration of 100 µg/mL, with the inhibition rates of 83.0 and 65.2%, respectively. Furthermore, the antibacterial activity of compounds 1-5 were evaluated against selected bacteria. Compounds 1-3 were found to possess potent antibacterial activity against Bacillus subtilis (ATCC 6633), with the minimum inhibitory concentration (MIC) values of 3.13-12.50 µg/mL, while Escherichia coli (ATCC 8739) and Salmonella typhimurium [CMCC(B) 50115] were not susceptible. These results suggest that the new polyketide derivate 2 and known compounds 1, 3, and 4 have potential to be used as biocontrol agents in agriculture.