Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(50): 18426-18435, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051938

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for a high proportion of lung cancer cases globally, but early detection remains challenging, and insufficient oxygen supply at tumor sites leads to suboptimal treatment outcomes. Therefore, the development of core-shell Au@Pt-Se nanoprobes (Au@Pt-Se NPs) with peptide chains linked through Pt-Se bonds was designed and synthesized for NSCLC biomarker protein calcium-activated neutral protease 2 (CAPN2) and photothermal therapy (PTT) enhancement. The NP can be specifically cleaved by CAPN2, resulting in fluorescence recovery to realize the detection. The Pt-Se bonds exhibit excellent resistance to biologically abundant thiols such as glutathione, thus avoiding "false-positive" results and enabling precise detection of NSCLC. Additionally, the platinum (Pt) shell possesses catalase-like properties that catalyze the generation of oxygen from endogenous hydrogen peroxide within the tumor, thereby reducing hypoxia-inducible factor-1α (HIF-1α) levels and alleviating the hypoxic environment at the tumor site. The Au@Pt-Se NPs exhibit strong absorption bands, enabling the possibility of PTT in the near-infrared II region (NIR II). This study presents an effective approach for the early detection of NSCLC while also serving as an oxygen supplier to alleviate the hypoxic environment and enhance NIR II PTT.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Carcinoma de Pulmón de Células no Pequeñas/terapia , Platino (Metal)/química , Neoplasias Pulmonares/terapia , Neoplasias/patología , Oxígeno , Línea Celular Tumoral , Nanopartículas/química
2.
Molecules ; 28(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687041

RESUMEN

Charge-shift (CS) bonding is a new bonding paradigm in the field of chemical bonds. Our recent study has revealed that certain Cu/Ag/Au-bonds display both CS bonding and ω-bonding characters. In this investigation, we extend our study to halogen bonding. Our focus is on scrutinizing the CS bonding in halogen-bonded BXY (B is a small Lewis base H2O or NH3; X and Y are halogen atoms) complexes by using natural bond orbital (NBO) analysis, natural resonance theory (NRT), and atoms in molecules (AIM) methods. The primary objective is to establish a connection between halogen bonding (B-X) in BXY and CS bonding in free XY (di-halogens). The calculations indicate that the studied BXY can be classified into two types. One type with a weak halogen bond shows closed-shell interaction. The other type with a stronger B-X interaction exhibits both CS bonding and ω-bonding characters (as seen in NH3ClF, NH3BrF, and NH3IF). Another interesting finding is a novel propensity that the CS bonding in free XY tends to carry over the halogen bonding in BXY, and the same propensity is found in Cu/Ag/Au ω-bonded species. The present study may offer an approach to probe CS bonding in many more 3c/4e ω-bonded molecules.

3.
Environ Sci Technol ; 56(14): 10442-10453, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35749227

RESUMEN

A single-atom Ce-modified α-Fe2O3 catalyst (Fe0.93Ce0.07Ox catalyst with 7% atomic percentage of Ce) was synthesized by a citric acid-assisted sol-gel method, which exhibited excellent performance for selective catalytic reduction of NOx with NH3 (NH3-SCR) over a wide operating temperature window. Remarkably, it maintained ∼93% NO conversion efficiency for 168 h in the presence of 200 ppm SO2 and 5 vol % H2O at 250 °C. The structural characterizations suggested that the introduction of Ce leads to the generation of local Fe-O-Ce sites in the FeOx matrix. Furthermore, it is critical to maintain the atomic dispersion of the Ce species to maximize the amounts of Fe-O-Ce sites in the Ce-doped FeOx catalyst. The formation of CeO2 nanoparticles due to a high doping amount of Ce species leads to a decline in catalytic performance, indicating a size-dependent catalytic behavior. Density functional theory (DFT) calculation results indicate that the formation of oxygen vacancies in the Fe-O-Ce sites is more favorable than that in the Fe-O-Fe sites in the Ce-free α-Fe2O3 catalyst. The Fe-O-Ce sites can promote the oxidation of NO to NO2 on the Fe0.93Ce0.07Ox catalyst and further facilitate the reduction of NOx by NH3. In addition, the decomposition of NH4HSO4 can occur at lower temperatures on the Fe0.93Ce0.07Ox catalyst containing atomically dispersed Ce species than on the α-Fe2O3 reference catalyst, resulting in the good SO2/H2O resistance ability in the NH3-SCR reaction.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119252, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33316655

RESUMEN

A key issue for constructing optical and redox-active receptors is how to conjugate a specific sensing kernel with a multi-signal-responsive system to carry out multi-feature analysis. Mercury is considered to be highly toxic to human health and ecological security. In this work, we present a novel near-infrared optical and redox-active receptor that can sense Hg2+ at ppb level in aqueous media via multi-model monitors with a low detection limit of 8.4 × 10-9 M (1.68 ppb). This receptor features a visible detection, 'off-on' fluorescence response, and efficient electrochemistry assessment, as well as pH-insensitivity to Hg2+ with high sensitivity. In view of its marked near-infrared emission and fluorescence enhancement, we successfully applied this receptor to visualize Hg2+ in live cells. Furthermore, a possible sensing model was established and rationalized with theoretical studies.


Asunto(s)
Mercurio , Agua , Fluorescencia , Colorantes Fluorescentes , Humanos , Oxidación-Reducción , Rodaminas
5.
PLoS One ; 11(6): e0156413, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258066

RESUMEN

Appropriate leaf rolling enhances erect-leaf habits and photosynthetic efficiency, which consequently improves grain yield. Here, we reported the novel lateral organ boundaries domain (LBD) gene OsLBD3-7, which is involved in the regulation of leaf rolling. OsLBD3-7 works as a transcription activator and its protein is located on the plasma membrane and in the nucleus. Overexpression of OsLBD3-7 leads to narrow and adaxially rolled leaves. Microscopy of flag leaf cross-sections indicated that overexpression of OsLBD3-7 led to a decrease in both bulliform cell size and number. Transcriptional analysis showed that key genes that had been reported to be negative regulators of bulliform cell development were up-regulated in transgenic plants. These results indicated that OsLBD3-7 might acts as an upstream regulatory gene of bulliform cell development to regulate leaf rolling, which will give more insights on the leaf rolling regulation mechanism.


Asunto(s)
Oryza/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Oryza/genética , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...