Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 138: 112550, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38941671

RESUMEN

BACKGROUND: Sepsis is considered a high risk factor for new-onset atrial fibrillation (NOAF), with neutrophil extracellular traps (NETs) being implicated in the pathogenesis of numerous diseases. However, the precise role of NETs and NETs-related genes (NRGs) in the occurrence of NOAF in sepsis remains inadequately elucidated. The objective of this study was to identify hub NRGs connecting sepsis and AF, and to investigate the potential association between NETs and NOAF in sepsis. METHODS: The AF and sepsis microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis of shared pathophysiological mechanisms and NRGs implicated in both sepsis and AF using bioinformatics techniques. The CIBERSORT algorithm was employed to assess immune cell infiltration and identify common immune characteristics in these diseases. Additionally, a rat model of lipopolysaccharide (LPS)-induced sepsis was utilized to investigate the association between NETs, NRGs, and sepsis-induced AF. Western blotting, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were employed to assess the expression of NRGs, the formation of NETs, and the infiltration of neutrophils. Electrophysiological analysis and multi-electrode array techniques were utilized to examine the vulnerability and conduction heterogeneity of AF in septic rats. Furthermore, intervention was conducted in LPS-induced sepsis rats using DNase I, a pharmacological agent that specifically targets NETs, in order to assess its impact on neutrophil infiltration, NETs formation, hub NRGs protein expression, and AF vulnerability. RESULTS: A total of 61 commonly differentially expressed genes (DEGs) and four hub DE-NRGs were identified in the context of sepsis and AF. Functional enrichment analysis revealed that these DEGs were predominantly associated with processes related to inflammation and immunity. Immune infiltration analysis further demonstrated the presence of immune infiltrating cells, specifically neutrophil infiltration, in both sepsis and AF. Additionally, a positive correlation was observed between the relative expression of the four hub DE-NRGs and neutrophil infiltration. In rats with LPS-induced sepsis, we observed a notable upregulation in the expression of four DE-NRGs, the formation of NETs, and infiltration of neutrophils in atrial tissue. Through electrophysiological assessments, we identified heightened vulnerability to AF, reduced atrial surface conduction velocity, and increased conduction heterogeneity in LPS-induced sepsis rats. Notably, these detrimental effects can be partially ameliorated by treatment with DNase I. CONCLUSIONS: Through bioinformatics analysis and experimental validation, we identified four hub NRGs in sepsis and AF. Subsequent experiments indicated that the formation of NETs in the atria may contribute to the pathogenesis of NOAF in sepsis. These discoveries offer potential novel targets and insights for the prevention and treatment of NOAF in sepsis.


Asunto(s)
Fibrilación Atrial , Trampas Extracelulares , Lipopolisacáridos , Neutrófilos , Ratas Sprague-Dawley , Sepsis , Animales , Trampas Extracelulares/inmunología , Sepsis/inmunología , Sepsis/genética , Fibrilación Atrial/genética , Fibrilación Atrial/inmunología , Fibrilación Atrial/inducido químicamente , Ratas , Masculino , Neutrófilos/inmunología , Humanos , Modelos Animales de Enfermedad , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/genética
2.
Front Cell Dev Biol ; 12: 1343894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389703

RESUMEN

Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.

3.
Ann Clin Lab Sci ; 53(6): 890-904, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38182149

RESUMEN

OBJECTIVE: This research explored the biological role and underlying mechanisms of carboxypeptidase vitellogenic-like (CPVL) in the progression of osteosarcoma. METHODS: Through mining of microarray data from the GEO database and utilization of qRT-PCR and Western blot analyses, CPVL expression in osteosarcoma tissues and cells was evaluated. RNA interference and lentiviral transduction techniques were applied to edit the CPVL gene. RNA-seq was used to screen for the downstream target genes of CPVL. RESULTS: In both osteosarcoma biopsy samples and cell lines, the expression of CPVL was abnormally higher than that in normal cells or osteoblasts. CPVL silencing notably inhibited the proliferative activity of osteosarcoma cells, whereas CPVL overexpression had the opposite effect. CPVL silencing had potent tumor-suppressive ability in a xenograft osteosarcoma model in nude mice. CPVL silencing significantly suppressed osteosarcoma cell migration, invasion and EMT, whereas CPVL overexpression accelerated these events. Downstream genes related to the occurrence and development of osteosarcoma, including TGF-ß/Smad signaling pathway molecules (TGF-ß2, TGF-ßR1, Smad2/3, and Smad5), were suppressed by CPVL silencing. CONCLUSIONS: High CPVL expression in osteosarcoma not only promoted tumor growth but also induced the EMT process through the TGF-ß/Smad signaling pathway. CPVL may be a new antitumor therapeutic target for osteosarcoma.


Asunto(s)
Neoplasias Óseas , Carboxipeptidasas , Osteosarcoma , Animales , Humanos , Ratones , Carboxipeptidasas/metabolismo , Proliferación Celular/genética , Modelos Animales de Enfermedad , Ratones Desnudos , Osteosarcoma/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Smad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...