RESUMEN
A SMBBR was established to treat medium ammonium under room temperature. Results showed that TN load can reach 0.16 kg·(m3·d)-1, and the average TN removal efficiency was (51.58±6.80)% in the SMBBR with an influent ammonia concentration of 100 mg·L-1 and DO of 0.4-0.7 mg·L-1. AOB, ANAMMOX, and NOB activity reached (2253.21±502.10) mg·(m2·d)-1, (4847.46±332.89) mg·(m2·d)-1, and (1455.17±473.83) mg·(m2·d)-1, and ANAMMOX and AOB bacteria were found to develop a good collaborative relationship. Quantitative PCR results showed that the relative abundance of ANAMMOX, AOB and NOB were 11.57%, 1.01% and 0.94%, respectively. The stable operation of single stage partial nitritation-ANAMMOX process provide an alternative technology for medium ammonia wastewater.
Asunto(s)
Compuestos de Amonio , Aguas Residuales , Reactores Biológicos , Nitrógeno , Oxidación-ReducciónRESUMEN
Background. Clinically, electroacupuncture (EA) is the most common therapy for aging-related cognitive impairment (CI). However, the underlying pathomechanism remains unidentified. The aims of this study were to observe the effect of EA on cognitive function and explore the potential mechanism by which EA acts on the NLRP3/caspase-1 signaling pathway. Main Methods. Thirty male SAMP8 mice were randomly divided into the model, the 2 Hz EA and 10 Hz EA groups. Ten male SAMR1 mice were assigned to the control group. Cognitive function was assessed through the Morris water maze test. Hippocampal morphology and cell death were observed by HE and TUNEL staining, respectively. The serum IL-1ß, IL-6, IL-18, and TNF-α levels were measured by ELISA. Hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1ß, IL-18, Aß, and tau proteins were detected by Western blotting. Key Findings. Cognitive function, hippocampal morphology, and TUNEL-positive cell counts were improved by both EA frequencies. The serum IL-1ß, IL-6, IL-18, and TNF-α levels were decreased by EA treatment. However, 10 Hz EA reduced the number of TUNEL-positive cells in the CA1 region and serum IL-1ß and IL-6 levels more effectively than 2 Hz EA. NLRP3/caspase-1 pathway-related proteins were significantly downregulated by EA, but 2 Hz EA did not effectively reduce ASC protein expression. Interestingly, both EA frequencies failed to reduce the expression of Aß and tau proteins. Significance. The effects of 10 Hz EA at the GV20 and ST36 acupoints on the NLRP3/caspase-1 signaling pathway may be a mechanism by which this treatment relieves aging-related CI in mice.
Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Electroacupuntura , Hipocampo/fisiología , Transducción de Señal , Animales , Caspasa 1/fisiología , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/fisiologíaRESUMEN
Sagacious Confucius' Pillow Elixir (SCPE) is a traditional Chinese medicine that is mainly used for cognitive impairment in aging; however, the underlying mechanisms remain unclear. Aging is one of the most important pathogenic factors leading to inflammation and pyroptosis in the hippocampus, which may be a potential mechanism in elderly patients with cognitive impairment. Here, we examined whether SCPE could improve cognitive impairment in SAMP8 mice by reducing hippocampal inflammation and pyroptosis. Seven-month-old senescence-accelerated P8 mice (SAMP8) received SCPE (2.3 g/kg/day; 4.6 g/kg/day; 9.2 g/kg/day) for 28 days. Cognitive function and morphometric examinations were performed followed by water maze testing, hematoxylin-eosin staining, Congo red staining, toluidine blue staining, and TUNEL analysis of hippocampal CA1 and CA3 regions. Escape latency increased and times across platforms decreased in SAMP8 mice; however, both of them were normalized by SCPE after 28 days. Aging caused significant pyroptosis in hippocampal CA1 and CA3 regions, as evidenced by neuronal degeneration and necrosis, amyloid deposition, and decreased Nissl body amounts after cognitive impairment, which were greatly improved by SCPE. SCPE reduced serum IL-1ß, IL-6, IL-18, and TNF-α levels and reduced hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1ß, IL-6, IL-18, and Aß expression. Thus, SCPE exerts an antipyroptotic effect in aging, mainly by suppressing the NLRP3/caspase-1 signaling pathway.