Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 51(38): 14517-14525, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36070498

RESUMEN

Preparing low-cost and highly efficient electrocatalysts for the hydrogen evolution reaction using a simple strategy still faces challenges. In this work, we proposed a facile phosphating process to successfully transform CoFe-BTC (BTC = 1,3,5-benzenetricarboxylate) precursors into carbon-incorporated bimetallic phosphide (CoFe-P/C) nanospheres. Due to the synergistic effect between bimetals and uniformly covered carbon shells outside, the as-synthesized porous bimetallic phosphide nanospheres exhibit superior HER activity, enhanced kinetics, and excellent cycle durability in both acidic and alkaline solutions. The optimized material could afford a current density of 10 mA cm-2 with overpotentials of 138 and 193 mV for the HER in acidic and alkaline solutions, respectively. Meanwhile, it delivered small Tafel slopes of 84 and 78 mV dec-1 for the HER in 0.5 M H2SO4 and 1.0 M KOH, respectively. Moreover, an assembled alkaline electrolyzer enabled a low voltage of 1.62 V to drive a current density of 10 mA cm-2 for overall water splitting. DFT calculations indicate that the CoP-Fe2P composite is supposed to exhibit better HER performance than each component, revealing the vital role of the interfacial site in catalyzing the HER.

2.
ACS Appl Mater Interfaces ; 13(40): 47717-47727, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34605245

RESUMEN

Defect engineering is a reasonable solution to improve the surface properties and electronic structure of nanomaterials. However, how to introduce dual defects into nanomaterials by a simple way is still facing challenge. Herein, we propose a facile two-step solvothermal method to introduce Fe dopants and S vacancies into metal-organic framework-derived bimetallic nickel cobalt sulfide composites (NiCo-S). The as-prepared Fe-doped NiCo-S (Fe-NiCo-S) possesses improved charge storage kinetics and activities as electrode material for supercapacitors and the oxygen evolution reaction (OER). The obtained Fe-NiCo-S nanosheet has a high specific capacitance (2779.6 F g-1 at 1 A g-1) and excellent rate performance (1627.2 F g-1 at 10 A g-1). A hybrid supercapacitor device made of Fe-NiCo-S as the positive electrode and reduced graphene oxide (rGO) as the negative electrode presents a high energy density of 56.0 Wh kg-1 at a power density of 847.1 W kg-1 and excellent cycling stability (capacity retention of 96.5% after 10,000 cycles at 10 A g-1). Additionally, the Fe-NiCo-S composite modified by Fe doping and S vacancy has an ultralow oxygen evolution overpotential of 247 mV at 10 mA cm-2. Based on the density functional theory (DFT) calculation, defects cause more electrons to appear near the Fermi level, which is conducive to electron transfer in electrochemical processes. Our work provides a rational strategy for facilely introducing dual defects into metal sulfides and may provide a novel idea to prepare electrode materials for energy storage and energy conversion application.

3.
Nanotechnology ; 32(50)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34450612

RESUMEN

During the past decades, nano-structured metal oxide electrode materials have received growing attention due to their low development cost and high theoretical specific capacity, accordingly, quite a lot of metal oxide electrode materials are being used in electrochemical energy storage devices. However, the further development was limited by the relatively low electrical conductivity and the volume expansion during electrochemical reactions. Thus, many approaches have been proposed to obtain high-efficiency metal oxide electrode materials, such as designing nanomaterials with ideal morphology and high specific surface area, optimizing with carbon-based materials (such as graphene and glucose) to prepare nanocomposites, combining with conductive substrates to enhance the conductivity of electrodes, etc. Owning to the advantages of low cost and high chemical stability of carbon materials, core-shell structure formed by carbon-coated metal oxides is considered to be a promising solution to solve these problems. Therefore, this review mainly focuses on recent research advances in the field of carbon-coated metal oxides for energy storage, summarizing the advantages and disadvantages of common metal oxides and different types of carbon sources, and proposing methods to optimize the material properties in terms of structure and morphology, carbon layer thickness, coating method, specific surface area and pore size distribution, as well as improving electrical conductivity. In addition, the double or multi-layer coating strategy is also a reflection of the continuous development of carbon coating method. Hopefully, this rereview may provide a new direction for the renewal and development of future energy storage electrode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...