Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 197: 107053, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39442814

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease characterized by abdominal pain, diarrhea, and rectal bleeding. This study aims to explore the protective effects of a phage cocktail (108 PFU/mL of Clostridium perfringens phage, 108 PFU/mL of Escherichia coli phage, and 108 PFU/mL of Salmonella phage) on a mouse colitis model induced by dextran sulfate sodium (DSS) and its potential toxic effects on normal mice. The results demonstrate that the phage cocktail significantly alleviates clinical symptoms in mice, reduces colon shortening, weight loss, and colonic pathological damage. Furthermore, the phage cocktail markedly suppresses the inflammatory response and safeguards intestinal barrier integrity in the colonic tissues of the mouse colitis model. Preliminary investigation of the toxic effects of the phage cocktail in mice indicates that continuous administration for 14 days does not yield statistically significant differences in hematological and blood biochemical parameters, and specific pathological changes are absent in histopathological examination results. The aforementioned findings suggest that the phage cocktail exhibits anti-inflammatory and intestinal barrier protective effects in the mouse colitis model, and it does not exert significant toxic side effects on mice.

2.
J Pharm Anal ; 14(10): 100997, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39211791

RESUMEN

miR-135 is a highly conserved miRNA in mammals and includes miR-135a and miR-135b. Recent studies have shown that miR-135b is a key regulatory factor in cardio-cerebrovascular diseases. It is involved in regulating the pathological process of myocardial infarction, myocardial ischemia/reperfusion injury, cardiac hypertrophy, atrial fibrillation, diabetic cardiomyopathy, atherosclerosis, pulmonary hypertension, cerebral ischemia/reperfusion injury, Parkinson's disease, and Alzheimer's disease. Obviously, miR-135b is an emerging player in cardio-cerebrovascular diseases and is expected to be an important target for the treatment of cardio-cerebrovascular diseases. However, the crucial role of miR-135b in cardio-cerebrovascular diseases and its underlying mechanism of action has not been reviewed. Therefore, in this review, we aimed to comprehensively summarize the role of miR-135b and the signaling pathway mediated by miR-135b in cardio-cerebrovascular diseases. Drugs targeting miR-135b for the treatment of diseases and related patents, highlighting the importance of this target and its utility as a therapeutic target for cardio-cerebrovascular diseases, have been discussed.

3.
Front Pharmacol ; 15: 1394816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021831

RESUMEN

The pursuit of effective treatments for brain tumors has increasingly focused on the promising area of nanoparticle-enhanced radiotherapy (NERT). This review elucidates the context and significance of NERT, with a particular emphasis on its application in brain tumor therapy-a field where traditional treatments often encounter obstacles due to the blood-brain barrier (BBB) and tumor cells' inherent resistance. The aims of this review include synthesizing recent advancements, analyzing action mechanisms, and assessing the clinical potential and challenges associated with nanoparticle (NP) use in radiotherapy enhancement. Preliminary preclinical studies have established a foundation for NERT, demonstrating that nanoparticles (NPs) can serve as radiosensitizers, thereby intensifying radiotherapy's efficacy. Investigations into various NP types, such as metallic, magnetic, and polymeric, have each unveiled distinct interactions with ionizing radiation, leading to an augmented destruction of tumor cells. These interactions, encompassing physical dose enhancement and biological and chemical radio sensitization, are crucial to the NERT strategy. Although clinical studies are in their early phases, initial trials have shown promising results in terms of tumor response rates and survival, albeit with mindful consideration of toxicity profiles. This review examines pivotal studies affirming NERT's efficacy and safety. NPs have the potential to revolutionize radiotherapy by overcoming challenges in targeted delivery, reducing off-target effects, and harmonizing with other modalities. Future directions include refining NP formulations, personalizing therapies, and navigating regulatory pathways. NERT holds promise to transform brain tumor treatment and provide hope for patients.

4.
Int Immunopharmacol ; 138: 112595, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38950455

RESUMEN

Periodontitis is a chronic inflammatory disease and is the primary contributor to adult tooth loss. Diabetes exacerbates periodontitis, accelerates periodontal bone resorption. Thus, effectively managing periodontitis in individuals with diabetes is a long-standing challenge. This review introduces the etiology and pathogenesis of periodontitis, and analyzes the bidirectional relationship between diabetes and periodontitis. In this review, we comprehensively summarize the four pathological microenvironments influenced by diabetic periodontitis: high glucose microenvironment, bacterial infection microenvironment, inflammatory microenvironment, and bone loss microenvironment. The hydrogel design strategies and latest research development tailored to the four microenvironments of diabetic periodontitis are mainly focused on. Finally, the challenges and potential solutions in the treatment of diabetic periodontitis are discussed. We believe this review will be helpful for researchers seeking novel avenues in the treatment of diabetic periodontitis.


Asunto(s)
Hidrogeles , Periodontitis , Humanos , Periodontitis/tratamiento farmacológico , Periodontitis/inmunología , Animales , Complicaciones de la Diabetes , Microambiente Celular , Pérdida de Hueso Alveolar
5.
Int J Biol Sci ; 20(1): 127-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164188

RESUMEN

Tenascin C (TNC), a rich glycoprotein of the extracellular matrix, exhibits a pro-atherosclerosis or anti-atherosclerosis effect depending on its location. TNC, especially its C domain/isoform (TNC-C), is strongly overexpressed in atherosclerotic plaque active areas but virtually undetectable in most normal adult tissues, suggesting that TNC is a promising delivery vector target for atherosclerosis-targeted drugs. Many delivery vectors were investigated by recognizing TNC-C, including G11, G11-iRGD, TN11, PL1, and PL3. F16 and FNLM were also investigated by recognizing TNC-A1 and TNC, respectively. Notably, iRGD was undergoing clinical trials. PL1 not only recognizes TNC-C but also the extra domain-B (EDB) of fibronectin (FN), which is also a promising delivery vector for atherosclerosis-targeted drugs, and several conjugate agents are undergoing clinical trials. The F16-conjugate agent F16IL2 is undergoing clinical trials. Therefore, G11-iRGD, PL1, and F16 have great development value. Furthermore, ATN-RNA and IMA950 were investigated in clinical trials as therapeutic drugs and vaccines by targeting TNC, respectively. Therefore, targeting TNC could greatly improve the success rate of atherosclerosis-targeted drugs and/or specific drug development. This review discussed the role of TNC in atherosclerosis, atherosclerosis-targeted drug delivery vectors, and agent development to provide knowledge for drug development targeting TNC.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Adulto , Humanos , Tenascina/genética , Aterosclerosis/tratamiento farmacológico , Matriz Extracelular , Placa Aterosclerótica/tratamiento farmacológico , Isoformas de Proteínas
6.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119656, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38182060

RESUMEN

Diabetic cardiomyopathy remains a formidable health challenge with a high mortality rate and no targeted treatments. Growth differentiation factor 11 (GDF11) has shown promising effects on cardiovascular diseases; however, its role and the underlying mechanism in regulating diabetic cardiomyopathy remain unclear. In this study, we developed mouse models of diabetic cardiomyopathy using leptin receptor-deficient (db/db) mice and streptozocin-induced C57BL/6 mice. The diabetic cardiomyopathy model mice exhibited apparent structural damage in cardiac tissues and a significant increase in the expression of apoptosis-related proteins. Notably, we observed a significant decreased expression of GDF11 in the myocardium of mice with diabetic cardiomyopathy. Moreover, GDF11 cardiac-specific knock-in mice (transgenic mice) exhibited improved cardiac function and reduced apoptosis. Moreover, exogenous administration of GDF11 mitigated high glucose-induced cardiomyocyte apoptosis. Mechanistically, we demonstrated that GDF11 alleviated high glucose-induced cardiomyocytes apoptosis by inhibiting the activation of the alkylation repair homolog 5 (ALKBH5)-forkhead box group O3a (FOXO3)-cerebellar degeneration-related protein 1 transcript (CDR1as)/Hippo signaling pathway. Consequently, this novel mechanism effectively counteracted myocardial cell apoptosis, providing valuable insights into potential therapeutic strategies for clinical diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas , Miocitos Cardíacos , Ratones , Animales , Miocitos Cardíacos/metabolismo , Cardiomiopatías Diabéticas/inducido químicamente , Cardiomiopatías Diabéticas/metabolismo , Vía de Señalización Hippo , Ratones Endogámicos C57BL , Factores de Diferenciación de Crecimiento/genética , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/farmacología , Glucosa/farmacología , Glucosa/metabolismo , Apoptosis/genética
7.
Cardiovasc Diabetol ; 23(1): 21, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195542

RESUMEN

Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3ß, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1ß, IL-6, JAG2, KCNJ2, MALT1, ß-MHC, NF-κB, PCK1, PLCß1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Factores de Ribosilacion-ADP , Grosor Intima-Media Carotídeo , Diacilglicerol O-Acetiltransferasa , MicroARNs/genética , Proproteína Convertasa 9 , Proteína smad7 , Aterosclerosis/genética
8.
Front Immunol ; 14: 1323670, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143761

RESUMEN

Growth differentiation factor 11 (GDF11) is one of the important factors in the pathophysiological process of animals. It is widely expressed in many tissues and organs of animals, showing its wide biological activity and potential application value. Previous research has demonstrated that GDF11 has a therapeutic effect on various diseases, such as anti-myocardial aging and anti-tumor. This has not only sparked intense interest and enthusiasm among academics but also spurred some for-profit businesses to attempt to develop GDF11 as a medication for regenerative medicine or anti-aging application. Currently, Sotatercept, a GDF11 antibody drug, is in the marketing application stage, and HS-235 and rGDF11 are in the preclinical research stage. Therefore, we believe that figuring out which cells GDF11 acts on and its current problems should be an important issue in the scientific and commercial communities. Only through extensive, comprehensive research and discussion can we better understand the role and potential of GDF11, while avoiding unnecessary risks and misinformation. In this review, we aimed to summarize the role of GDF11 in different cells and its current controversies and challenges, providing an important reference for us to deeply understand the function of GDF11 and formulate more effective treatment strategies in the future.


Asunto(s)
Células , Factores de Diferenciación de Crecimiento , Humanos , Animales , Factores de Diferenciación de Crecimiento/metabolismo , Factores de Diferenciación de Crecimiento/uso terapéutico , Células/metabolismo , Biomarcadores , Neoplasias/terapia , Cardiomiopatías/terapia , Inflamación/terapia
9.
Biomed Pharmacother ; 167: 115589, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37776642

RESUMEN

Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.

10.
Clin Epigenetics ; 15(1): 146, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697409

RESUMEN

Dysregulation of histone modifications has been implicated in the pathogenesis of both inflammatory bowel disease (IBD) and colorectal cancer (CRC). These diseases are characterized by chronic inflammation, and alterations in histone modifications have been linked to their development and progression. Furthermore, the gut microbiota plays a crucial role in regulating immune responses and maintaining gut homeostasis, and it has been shown to exert effects on histone modifications and gene expression in host cells. Recent advances in our understanding of the roles of histone-modifying enzymes and their associated chromatin modifications in IBD and CRC have provided new insights into potential therapeutic interventions. In particular, inhibitors of histone-modifying enzymes have been explored in clinical trials as a possible therapeutic approach for these diseases. This review aims to explore these potential therapeutic interventions and analyze previous and ongoing clinical trials that examined the use of histone-modifying enzyme inhibitors for the treatment of IBD and CRC. This paper will contribute to the current body of knowledge by exploring the latest advances in the field and discussing the limitations of existing approaches. By providing a comprehensive analysis of the potential benefits of targeting histone-modifying enzymes for the treatment of IBD and CRC, this review will help to inform future research in this area and highlight the significance of understanding the functions of histone-modifying enzymes and their associated chromatin modifications in gastrointestinal disorders for the development of potential therapeutic interventions.


Asunto(s)
Histonas , Enfermedades Inflamatorias del Intestino , Humanos , Metilación de ADN , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación , Cromatina
11.
Cytokine Growth Factor Rev ; 71-72: 82-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37414617

RESUMEN

Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß superfamily that has garnered significant attention due to its anti-cardiac aging properties. Many studies have revealed that GDF11 plays an indispensable role in the onset of cardiovascular diseases (CVDs). Consequently, it has emerged as a potential target and novel therapeutic agent for CVD treatment. However, currently, no literature reviews comprehensively summarize the research on GDF11 in the context of CVDs. Therefore, herein, we comprehensively described GDF11's structure, function, and signaling in various tissues. Furthermore, we focused on the latest findings concerning its involvement in CVD development and its potential for clinical translation as a CVD treatment. We aim to provide a theoretical basis for the prospects and future research directions of the GDF11 application regarding CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Factores de Diferenciación de Crecimiento/uso terapéutico , Envejecimiento , Factor de Crecimiento Transformador beta , Transducción de Señal , Proteínas Morfogenéticas Óseas/uso terapéutico
12.
Int J Biol Sci ; 19(9): 2879-2896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324939

RESUMEN

Cholesterol levels are an initiating risk factor for atherosclerosis. Many genes play a central role in cholesterol synthesis, including HMGCR, SQLE, HMGCS1, FDFT1, LSS, MVK, PMK, MVD, FDPS, CYP51, TM7SF2, LBR, MSMO1, NSDHL, HSD17B7, DHCR24, EBP, SC5D, DHCR7, IDI1/2. Especially, HMGCR, SQLE, FDFT1, LSS, FDPS, CYP51, and EBP are promising therapeutic targets for drug development due to many drugs have been approved and entered into clinical research by targeting these genes. However, new targets and drugs still need to be discovered. Interestingly, many small nucleic acid drugs and vaccines were approved for the market, including Inclisiran, Patisiran, Inotersen, Givosiran, Lumasiran, Nusinersen, Volanesorsen, Eteplirsen, Golodirsen, Viltolarsen, Casimersen, Elasomeran, Tozinameran. However, these agents are all linear RNA agents. Circular RNAs (circRNAs) may have longer half-lives, higher stability, lower immunogenicity, lower production costs, and higher delivery efficiency than these agents due to their covalently closed structures. CircRNA agents are developed by several companies, including Orna Therapeutics, Laronde, and CirCode, Therorna. Many studies have shown that circRNAs regulate cholesterol synthesis by regulating HMGCR, SQLE, HMGCS1, ACS, YWHAG, PTEN, DHCR24, SREBP-2, and PMK expression. MiRNAs are essential for circRNA-mediated cholesterol biosynthesis. Notable, the phase II trial for inhibiting miR-122 with nucleic acid drugs has been completed. Suppressing HMGCR, SQLE, and miR-122 with circRNA_ABCA1, circ-PRKCH, circEZH2, circRNA-SCAP, and circFOXO3 are the promising therapeutic target for drug development, specifically the circFOXO3. This review focuses on the role and mechanism of the circRNA/miRNA axis in cholesterol synthesis in the hope of providing knowledge to identify new targets.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , Colesterol
13.
Mar Drugs ; 21(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37233453

RESUMEN

The incidence and mortality of cervical cancer in female malignancies are second only to breast cancer, which brings a heavy health and economic toll worldwide. Paclitaxel (PTX)-based regimens are the first-class choice; however, severe side effects, poor therapeutic effects, and difficulty in effectively preventing tumor recurrence or metastasis are unavoidable. Therefore, it is necessary to explore effective therapeutic interventions for cervical cancer. Our previous studies have shown that PMGS, a marine sulfated polysaccharide, exhibits promising anti-human papillomavirus (anti-HPV) effects through multiple molecular mechanisms. In this article, a continuous study identified that PMGS, as a novel sensitizer, combined with PTX exerted synergistic anti-tumor effects on cervical cancer associated with HPV in vitro. Both PMGS and PTX inhibited the proliferation of cervical cancer cells, and the combination of PMGS with PTX displayed significant synergistic effects on Hela cells. Mechanistically, PMGS synergizes with PTX by enhancing cytotoxicity, inducing cell apoptosis and inhibiting cell migration in Hela cells. Collectively, the combination of PTX and PMGS potentially provides a novel therapeutic strategy for cervical cancer.


Asunto(s)
Paclitaxel , Neoplasias del Cuello Uterino , Femenino , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Células HeLa , Sulfatos/farmacología , Línea Celular Tumoral , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Apoptosis
14.
Int J Biol Macromol ; 239: 124296, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37011743

RESUMEN

Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.


Asunto(s)
Cardiopatías , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis/fisiología , Mamíferos/metabolismo
15.
Acta Pharmacol Sin ; 44(5): 999-1013, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36347996

RESUMEN

Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 µL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Factores de Diferenciación de Crecimiento , Cicatrización de Heridas , Animales , Humanos , Ratones , Proteínas Morfogenéticas Óseas/metabolismo , Quimiocina CXCL12/efectos de los fármacos , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Factores de Diferenciación de Crecimiento/uso terapéutico , Factores de Diferenciación de Crecimiento/metabolismo , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
16.
Vascul Pharmacol ; 147: 107126, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36351515

RESUMEN

Diabetic mellitus (DM) complicated with myocardial infarction (MI) is a serious clinical issue that remained poorly comprehended. The aim of the present study was to investigate the role of NAD+ in attenuating cardiac damage following MI in diabetic mice. The cardiac dysfunction in DM mice with MI was more severe compared with the non-diabetic mice and NAD+ administration could significantly improve the cardiac function in both non-diabetic and diabetic mice after MI for both 7 days and 28 days. Moreover, application of NAD+ could markedly reduce the cardiac injury area of DM complicated MI mice. Notably, the level of NAD+ was robustly decreased in the cardiac tissue of MI mice, which was further reduced in the DM complicated mice and NAD+ administration could significantly restore the NAD+ level. Furthermore, NAD+ was verified to facilitate the angiogenesis in the MI area of both diabetic mice and non-diabetic mice by microfil perfusion assay and immunofluorescence. Additionally, we demonstrated that NAD+ promoted cardiac angiogenesis after myocardial infarction in diabetic mice by promoting the M2 polarization of macrophages. At the molecular level, NAD+ promoted the secretion of VEGF in macrophages and therefore facilitating migration and tube formation of endothelial cells. Mechanistically, NAD+ was found to promote the generation of pro-angionesis VEGF165 and inhibit the generation of anti-angionesis VEGF165b via regulating the alternative splicing factors of VEGF (SRSF1 and SRSF6) in macrophages. The effects of NAD+ were readily reversible on deficiency of it. Collectively, our data showed that NAD+ could attenuate myocardial injury via regulating the alternative splicing of VEGF and promoting angiogenesis in diabetic mice after myocardial infarction. NAD+ administration may therefore be considered a potential new approach for the treatment of diabetic patients with myocardial infarction.


Asunto(s)
Diabetes Mellitus , Infarto del Miocardio , Animales , Ratones , Empalme Alternativo , Células Endoteliales , Macrófagos , NAD/farmacología , NAD/uso terapéutico , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Front Pharmacol ; 13: 1035969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438815

RESUMEN

Main protease (Mpro) is a superior target for anti-SARS-COV-2 drugs. PF-07304814 is a phosphate ester prodrug of PF-00835231 that is rapidly metabolized into the active metabolite PF-00835231 by alkaline phosphatase (ALP) and then suppresses SARS-CoV-2 replication by inhibiting Mpro. PF-07304814 increased the bioavailability of PF-00835231 by enhancing plasma protein binding (PPB). P-glycoprotein (P-gp) inhibitors and cytochrome P450 3A (CYP3A) inhibitors increased the efficacy of PF-00835231 by suppressing its efflux from target cells and metabolism, respectively. The life cycle of SARS-CoV-2 is approximately 4 h. The mechanisms and efficacy outcomes of PF-00835231 occur simultaneously. PF-00835231 can inhibit not only cell infection (such as Vero E6, 293T, Huh-7.5, HeLa+angiotensin-converting enzyme 2 (ACE2), A549+ACE2, and MRC-5) but also the human respiratory epithelial organ model and animal model infection. PF-07304814 exhibits a short terminal elimination half-life and is cleared primarily through renal elimination. There were no significant adverse effects of PF-07304814 administration in rats. Therefore, PF-07304814 exhibits good tolerability, pharmacology, pharmacodynamics, pharmacokinetics, and safety in preclinical trials. However, the Phase 1 data of PF-07304814 were not released. The Phase 2/3 trial of PF-07304814 was also suspended. Interestingly, the antiviral activities of PF-00835231 derivatives (compounds 5-22) are higher than, similar to, or slightly weaker than those of PF-00835231. In particular, compound 22 exhibited the highest potency and had good safety and stability. However, the low solubility of compound 22 limits its clinical application. Prodrugs, nanotechnology and salt form drugs may solve this problem. In this review, we focus on the preclinical data of PF-07304814 and its active metabolite derivatives to hopefully provide knowledge for researchers to study SARS-CoV-2 infection.

18.
JACC Basic Transl Sci ; 7(9): 880-895, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36317130

RESUMEN

The most devastating and catastrophic deterioration of myocardial ischemia-reperfusion injury (MIRI) is cardiomyocyte death. Here we aimed to evaluate the role of lncRNA-ZFAS1 in MIRI and delineate its mechanism of action. The level of lncRNA-ZFAS1 was elevated in MIRI hearts, and artificial knockdown of lncRNA-ZFAS1 in mice improved cardiac function. Notch1 is a potential target of lncRNA-ZFAS1, and lncRNA-ZFAS1 could bind to the promoter region of Notch1 and recruit DNMT3b to induce Notch1 methylation. Nicotinamide mononucleotide could promote the expression of Notch1 by competitively inhibiting the expression of DNMT3b and improving the apoptosis of cardiomyocytes and cardiac function.

19.
J Enzyme Inhib Med Chem ; 37(1): 2755-2764, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36196773

RESUMEN

A set of novel diarylpyridines as anti-tubulin agents were designed, synthesised using a rigid pyridine as a linker to fix the cis-orientation of ring-A and ring-B. All of the target compounds were evaluated for their in vitro antiproliferative activities. Among them, 10t showed remarkable antiproliferative activities against three cancer cell lines (HeLa, MCF-7 and SGC-7901) in sub-micromolar concentrations. Consistent with its potent antiproliferative activity, 10t also displayed potent anti-tubulin activity. Cellular mechanism investigation elucidated 10t disrupted the cellular microtubule structure, arrested cell cycle at G2/M phase and induces apoptosis. Molecular modelling studies showed that 10t could bind to the colchicine binding site on microtubules. These results provide motivation and further guidance for the development of new CA-4 analogues.


Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Colchicina/metabolismo , Colchicina/farmacología , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Piridinas/farmacología , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo
20.
Front Bioeng Biotechnol ; 10: 1026248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312554

RESUMEN

Cancer is among the leading cause of deaths worldwide. Although conventional therapies have been applied in the fight against the cancer, the poor oxygen, low extracellular pH, and high interstitial fluid pressure of the tumor microenvironment mean that these treatments fail to completely eradicate cancer cells. Recently, bacteria have increasingly been considered to be a promising platform for cancer therapy thanks to their many unique properties, such as specific tumor-targeting ability, high motility, immunogenicity, and their use as gene or drug carriers. Several types of bacteria have already been used for solid and metastatic tumor therapies, with promising results. With the development of synthetic biology, engineered bacteria have been endowed with the controllable expression of therapeutic proteins. Meanwhile, nanomaterials have been widely used to modify bacteria for targeted drug delivery, photothermal therapy, magnetothermal therapy, and photodynamic therapy, while promoting the antitumor efficiency of synergistic cancer therapies. This review will provide a brief introduction to the foundation of bacterial biotherapy. We begin by summarizing the recent advances in the use of many different types of bacteria in multiple targeted tumor therapies. We will then discuss the future prospects of bacteria-mediated cancer therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...