Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Med Inform ; 114: 6-17, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29673605

RESUMEN

BACKGROUND: Currently the most consistent, widely accepted and detailed instrument to rate Parkinson's disease (PD) is the Movement Disorder Society sponsored Unified Parkinson Disease Rating Scale (MDS-UPDRS). However, the motor examination is based upon subjective human interpretation trying to capture a snapshot of PD status. Wearable sensors and machine learning have been broadly used to analyze PD motor disorder, but still most ratings and examinations lay outside MDS-UPDRS standards. Moreover, logical connections between features and output ratings are not clear and complex to derive from the model, thus limiting the understanding of the structure in the data. METHODS: Fifty-seven PD patients underwent a full motor examination in accordance to the MDS-UPDRS on twelve different sessions, gathering 123 measurements. Overall, 446 different combinations of limb features correlated to rest tremors amplitude are extracted from gyroscopes, accelerometers, and magnetometers and feed into a fuzzy inference system to yield severity estimations. RESULTS: A method to perform rest tremor quantification fully adhered to the MDS-UPDRS based on wearable sensors and fuzzy inference system is proposed, which enables a reliable and repeatable assessment while still computing features suggested by clinicians in the scale. This quantification is straightforward and scalable allowing clinicians to improve inference by means of new linguistic statements. In addition, the method is immediately accessible to clinical environments and provides rest tremor amplitude data with respect to the timeline. A better resolution is also achieved in tremors rating by adding a continuous range.


Asunto(s)
Lógica Difusa , Enfermedad de Parkinson/complicaciones , Índice de Severidad de la Enfermedad , Temblor/diagnóstico , Temblor/etiología , Dispositivos Electrónicos Vestibles , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad
2.
Sci Total Environ ; 542(Pt A): 562-77, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26540603

RESUMEN

Assessment of aircraft noise is an important task of nowadays airports in order to fight environmental noise pollution given the recent discoveries on the exposure negative effects on human health. Noise monitoring and estimation around airports mostly use aircraft noise signals only for computing statistical indicators and depends on additional data sources so as to determine required inputs such as the aircraft class responsible for noise pollution. In this sense, the noise monitoring and estimation systems have been tried to improve by creating methods for obtaining more information from aircraft noise signals, especially real-time aircraft class recognition. Consequently, this paper proposes a multilayer neural-fuzzy model for aircraft class recognition based on take-off noise signal segmentation. It uses a fuzzy inference system to build a final response for each class p based on the aggregation of K parallel neural networks outputs Op(k) with respect to Linear Predictive Coding (LPC) features extracted from K adjacent signal segments. Based on extensive experiments over two databases with real-time take-off noise measurements, the proposed model performs better than other methods in literature, particularly when aircraft classes are strongly correlated to each other. A new strictly cross-checked database is introduced including more complex classes and real-time take-off noise measurements from modern aircrafts. The new model is at least 5% more accurate with respect to previous database and successfully classifies 87% of measurements in the new database.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...