Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Control Release ; 371: 101-110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782065

RESUMEN

Vaginal drug delivery is often preferred over systemic delivery to reduce side effects and increase efficacy in treating diseases and conditions of the female reproductive tract (FRT). Current vaginal products have drawbacks, including spontaneous ejection of drug-eluting rings and unpleasant discharge from vaginal creams. Here, we describe the development and characterization of a hypotonic, gel-forming, Pluronic-based delivery system for vaginal drug administration. The rheological properties were characterized with and without common hydrogel polymers to demonstrate the versatility. Both qualitative and quantitative approaches were used to determine the Pluronic F127 concentration below the critical gel concentration (CGC) that was sufficient to achieve gelation when formulated to be hypotonic to the mouse vagina. The hypotonic, gel-forming formulation was found to form a thin, uniform gel layer along the vaginal epithelium in mice, in contrast to the rapidly forming conventional gelling formulation containing polymer above the CGC. When the hypotonic, gel-forming vehicle was formulated in combination with a progesterone nanosuspension (ProGel), equivalent efficacy was observed in the prevention of chemically-induced preterm birth (PTB) compared to commercial Crinone® vaginal cream. Further, ProGel showed marked benefits in reducing unpleasant discharge, reducing product-related toxicity, and improving compatibility with vaginal bacteria in vitro. A hypotonic, gel-forming delivery system may be a viable option for therapeutic delivery to the FRT.


Asunto(s)
Sistemas de Liberación de Medicamentos , Geles , Poloxámero , Vagina , Femenino , Animales , Administración Intravaginal , Poloxámero/química , Vagina/efectos de los fármacos , Progesterona/administración & dosificación , Progesterona/química , Reología , Ratones , Cremas, Espumas y Geles Vaginales/administración & dosificación , Embarazo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38748201

RESUMEN

Vaginal atrophy affects up to 57% of post-menopausal women, with symptoms ranging from vaginal burning to dysuria. Estradiol hormone replacement therapy may be prescribed to alleviate these symptoms, though many vaginal products have drawbacks including increased discharge and local tissue toxicity due to their hypertonic nature. Here, we describe the development and characterization of a Pluronic F127-coated estradiol nanosuspension (NS) formulation for improved vaginal estradiol delivery. We compare the pharmacokinetics to the clinical comparator vaginal cream (Estrace) and demonstrate increased delivery of estradiol to the vaginal tissue. We utilized ovariectomized (OVX) mice as a murine model of post-menopausal vaginal atrophy and demonstrated equivalent efficacy in vaginal re-epithelialization when dosed with either the estradiol NS or Estrace cream. Further, we demonstrate compatibility of the estradiol NS with vaginal bacteria in vitro. We demonstrate that a Pluronic F127-coated estradiol NS may be a viable option for the treatment of post-menopausal vaginal atrophy.

3.
Microbiol Spectr ; 12(4): e0389623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38376151

RESUMEN

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.


Asunto(s)
Acetaldehído/análogos & derivados , Antiinfecciosos , Infecciones por Escherichia coli , Pentosafosfatos , Profármacos , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Ratones , Infecciones Urinarias/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli Uropatógena/metabolismo
4.
Gastroenterology ; 164(6): 937-952.e13, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36657529

RESUMEN

BACKGROUND & AIMS: Tissue fibrosis results from uncontrolled healing responses leading to excessive mesenchymal cell activation and collagen and other extracellular matrix deposition. In the gastrointestinal tract, fibrosis leads to narrowing of the lumen and stricture formation. A drug treatment to prevent fibrosis and strictures in the gastrointestinal tract would be transformational for patient care. We aimed to develop a stricture treatment with the following characteristics and components: a small molecule with strong antifibrotic effects that is delivered locally at the site of the stricture to ensure correct lesional targeting while protecting the systemic circulation, and that is formulated with sustained-release properties to act throughout the wound healing processes. METHODS: A high-throughput drug screening was performed to identify small molecules with antifibrotic properties. Next, we formulated an antifibrotic small molecule for sustained release and tested its antifibrotic potential in 3 animal models of fibrosis. RESULTS: Sulconazole, a US Food and Drug Administration-approved drug for fungal infections, was found to have strong antifibrotic properties. Sulconazole was formulated as sulconazole nanocrystals for sustained release. We found that sulconazole nanocrystals provided superior or equivalent fibrosis prevention with less frequent dosing in mouse models of skin and intestinal tissue fibrosis. In a patient-like swine model of bowel stricture, a single injection of sulconazole nanocrystals prevented stricture formation. CONCLUSIONS: The current data lay the foundation for further studies to improve the management of a range of diseases and conditions characterized by tissue fibrosis.


Asunto(s)
Colágeno , Matriz Extracelular , Ratones , Animales , Porcinos , Constricción Patológica , Preparaciones de Acción Retardada , Matriz Extracelular/patología , Fibrosis
5.
Adv Drug Deliv Rev ; 191: 114543, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208729

RESUMEN

Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.


Asunto(s)
Nanopartículas , Femenino , Humanos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Vagina , Administración Intravaginal , Moco/química
6.
Adv Drug Deliv Rev ; 174: 190-209, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895215

RESUMEN

Preterm birth (PTB) is defined as delivery before 37 weeks of gestation. Globally, 15 million infants are born prematurely, putting these children at an increased risk of mortality and lifelong health challenges. Currently in the U.S., there is only one FDA approved therapy for the prevention of preterm birth. Makena is an intramuscular progestin injection given to women who have experienced a premature delivery in the past. Recently, however, Makena failed a confirmatory trial, resulting the Center for Drug Evaluation and Research's (CDER) recommendation for the FDA to withdrawal Makena's approval. This recommendation would leave clinicians with no therapeutic options for preventing PTB. Here, we outline recent interdisciplinary efforts involving physicians, pharmacologists, biologists, chemists, and engineers to understand risk factors associated with PTB, to define mechanisms that contribute to PTB, and to develop next generation therapies for preventing PTB. These advances have the potential to better identify women at risk for PTB, prevent the onset of premature labor, and, ultimately, save infant lives.


Asunto(s)
Desarrollo de Medicamentos , Nacimiento Prematuro/prevención & control , Caproato de 17 alfa-Hidroxiprogesterona/administración & dosificación , Animales , Aprobación de Drogas , Femenino , Humanos , Recién Nacido , Embarazo , Nacimiento Prematuro/etiología , Nacimiento Prematuro/fisiopatología , Progestinas/administración & dosificación , Factores de Riesgo
7.
Trends Mol Med ; 27(5): 436-450, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414070

RESUMEN

The efficacy of drugs administered by traditional routes is limited by numerous biological barriers that preclude reaching the intended site of action. Further, full body systemic exposure leads to dose-limiting, off-target side effects. Topical formulations may provide more efficacious drug and nucleic acid delivery for diseases and conditions affecting mucosal tissues, but the mucus protecting our epithelial surfaces is a formidable barrier. Here, we describe recent advances in mucus-penetrating approaches for drug and nucleic acid delivery to the ocular surface, the female reproductive tract, the gastrointestinal tract, and the airways.


Asunto(s)
Administración Tópica , Sistemas de Liberación de Medicamentos/tendencias , Moco , Nanopartículas , Administración Intravaginal , Administración Oftálmica , Animales , Vías de Administración de Medicamentos , Células Epiteliales , Femenino , Tracto Gastrointestinal , Humanos , Membrana Mucosa , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...